Ca²+诱导的 synaptophysin 蛋白的脂筏分布

吕继华, 何立, 隋森芳

(清华大学生物科学与技术系,生物膜与膜生物工程国家重点实验室,北京 100084)

摘要:文章研究了 Ca²+ 对 synaptophysin (Syp)蛋白的脂筏分布的影响。研究结果证明,Syp 蛋白的脂筏分布明显受到 Ca²+ 的特异性调控。在无 Ca²+ 的条件下,Syp 为典型的非脂筏蛋白;而在低浓度 Ca²+ 的条件下,Syp 可以转变为脂筏结合蛋白。文章还研究了 Syp 在 Ca²+ 的诱导下进入脂筏膜微区的分子机制。研究结果表明,Syp 在 Ca²+ 的诱导下进入脂筏这一现象依赖于其 C 末端胞质区,确定了 Syp 的胞质区在这种调节中的重要性。

关键词: synaptophysin ; 脂筏; Ca²⁺

中图分类号: Q735

0 引 言

近期研究表明,一些参与神经递质释放的重要蛋白,如 t-SNARE蛋白和 v-SNARE蛋白等,都可以分布在富含胆固醇的脂筏膜微区,脂筏在神经递质的释放过程中发挥着重要作用[1-7]。 Synaptophysin (Syp)是最早被发现的囊泡蛋白之一^[8],在神经递质释放过程中发挥重要作用^[9]。然而人们对 Syp 蛋白与脂筏的关系了解很少,仅有的研究结果也有矛盾,结论不是太清楚^[26,10]。因此研究 Syp 蛋白是否在脂筏里分布及其调控机制,有助于人们进一步了解脂筏与递质释放的关系。

我们分离纯化鼠脑的突触囊泡,分析 Syp 蛋白在其脂筏的分布情况,然后观察了 Ca²+ 对该分布的影响,发现 Syp 蛋白的脂筏分布可以明显受到 Ca²+ 的特异性调控。在无 Ca²+ 的条件下, Syp 为典型的非脂筏蛋白;而在低浓度 Ca²+ 的条件下, Syp 可以明显转变为脂筏结合蛋白。

最后我们研究了 Syp 在 Ca²⁺ 的诱导下进入脂筏膜微区的分子机制。通过对比 Syp 及其胞质区缺失突变体在 Ca²⁺ 处理条件下与脂筏作用的区别,我们发现 Syp 在 Ca²⁺ 的诱导下进入脂筏这一现象依赖于其 C 末端胞质区的存在,确定了 Syp 的胞质区在这种调节中的重要性。

本文为进一步了解 Ca²⁺ 及脂筏对递质释放的作用提供了一些信息: Syp 蛋白的这种受 Ca²⁺ 信号诱导的脂筏分布,很可能是神经细胞在空间和时

间上调控 Syp 的状态和功能的一种途径。囊泡的脂筏区可能不仅静态地决定 Syp 等融合相关蛋白与膜的作用及其分布,而且在 Ca²⁺等信号刺激下动态地调节递质释放和膜融合过程。

1 材料和方法

1.1 试剂

Syp 、Synaptobrevin (Syb)等抗体购自Santa Cruz; Synapsin 、Rab3a、Rabphilin3A等抗体购自BD Bioscience; Xpress™抗体购自Invitrogen。其他生化试剂购自Sigma公司。

1.2 鼠脑囊泡的分离

将成年鼠的鼠脑置于 4 预冷的 HES 缓冲液 (4 mmol/L HEPES-NaOH , 4 mmol/L EDTA , 320 mmol/L 蔗糖 , pH 7.4) 中匀浆。匀浆前加蛋白酶抑制剂(1 mmol/L PMSF , 4 mmol/L EDTA , 2 μ g/mL 亮抑蛋白酶 , 1 μ g/mL 胃蛋白酶抑制剂)和磷酸酶抑制剂(10 mmol/L NaF 或 1 mmol/L 钒酸钠)。匀浆后离心 ,800 g ,15 min ,上清再经12000 g ,20 min 离心 ,所得沉淀即为突触体。将突触体重悬于无蔗糖低渗缓冲液(4 mmol/L

收稿日期: 2008-03-26

基金项目: 国家自然科学基金项目 (30340420442,30330160)和

国家重点基础研究发展规划项目 (2004 CB720005)

通讯作者: 隋森芳, 电话: (010)62784768, 传真: (010)62793367,

E-mail: suisf@mail.tsinghua.edu.cn

1.3 脂筏的提取

用不连续的蔗糖密度梯度悬浮的办法提取质膜的脂筏[1/2]。将突触囊泡悬于含 1% TritonX-100 的MBS缓冲液(25 mmol/L MES-NaOH,150 mmol/L NaCl,pH 6.5)中,匀浆并冰上静置 20 min。用80%的蔗糖溶液将匀浆液调至蔗糖浓度为 40%,置于 5%和 30%蔗糖溶液的底部,从上到下三种蔗糖溶液体积比为 4 6 3。240000 g 离心 18 h 后,从上到下依次收集共 13 等份组分,沉淀混悬于等体积的 MBS 为第 14 份组分。脂筏组分由于具有较低的浮力密度而悬浮在 5%与 30%的界面上(第 4~6 管),而 TritonX-100 可溶性的蛋白则分布在 40%蔗糖层内(第 10~13 管),不溶性的密度较大的组分沉淀在最底部(第 14 管)。合并第 4~6 管为脂筏组分,合并第 10~13 管为可溶性组分。

进行胆固醇抽提实验时,用含 0.5% TritonX-100 和 0.5% Saponin 的 MBS 溶解囊泡。进行温度影响实验时,用 37 代替 4 ,其他条件均相同。进行 Ca²⁺ 敏感性实验时,分别用 4 mmol/L EDTA 或 1 mmol/L Ca²⁺ 处理提取的鼠脑突触囊泡,其他条件均相同。

1.4 质粒的构建

含 Syp 的 pBlueScript 质粒由 Prof. Rudolf Leube (Heidelberg, Germany) 惠赠, pcDNA4.0/ His-max 质粒由清华大学段明星教授惠赠。以下野生型 Syp 及其缺失胞质区的突变体被分别亚克隆到 pcDNA4/HisMax 质粒中并测序验证: Syp、Syp¹-223 (1-223), Syp¹-220 (1-260)。

1.5 细胞培养和转染

HEK293T 使用 DMEM 培养基培养。培养基中

含 10%(体积比)牛血清,100 U/mL 青霉素和 100 μ g/mL 链霉素。细胞在 37 含 5% CO_2 的细胞 培养箱中培养。用磷酸钙共沉淀的方法瞬时转染细胞,转染两天后收集细胞分析。

2 结果和讨论

2.1 Ca²⁺对 Syp I 蛋白在囊泡脂筏中分布的影响

脂筏是一种富含胆固醇和磷脂的膜微区[11,12]。 人们最早发现质膜上的脂筏[11]之后,在很多亚细胞器膜上也发现存在脂筏,包括内吞体、高尔基体以及内质网[13,14]。近期研究表明,一些参与神经递质释放的重要蛋白,如 SNARE 蛋白、钙离子通道等[25],都在富含胆固醇的脂筏膜微区中有分布,暗示脂筏在神经递质的释放过程中发挥着重要作用。早期研究显示突触囊泡的磷脂组成与质膜有一定区别,而且突触囊泡膜上更富含胆固醇,因此突触囊泡膜上也可能存在脂筏。我们实验室曾研究证明突触囊泡膜上具有典型的脂筏,并报道了相关的分离纯化方法[15]。

Synaptophysin (Syp)是最早被发现的囊泡蛋白之一^[8],在神经递质释放过程中发挥重要作用^[9]。然而人们对 Syp 蛋白与脂筏的关系了解很少,仅有的研究结果也有矛盾,结论不是太清楚^[6,16]。因此我们认为研究 Syp 蛋白是否在脂筏里分布及其调控机制,对于进一步了解脂筏对递质释放的作用是非常有用的。

生物膜上的脂筏是一种液态有序的微区,它具有在 4 时不溶于去污剂和低浮力密度的特性。现在 , 人们普遍采用分离去污剂不溶的膜组分(DRMs)的方法研究脂筏^[17]。有研究显示 , Syp在 0.1%的 Triton 中有弱的脂筏分布^[10]。我们和前人的研究显示 , 4 时 Syp 蛋白完全处于 1% Triton 可溶组分中 , 是一个非脂筏蛋白^[215]。

Ca²⁺ 是神经递质释放的重要信使,可以调控很多蛋白的功能和状态。关于 Syp 与递质释放的关系,以及 Syp 与其他蛋白之间的相互作用已经有大量研究报道^[18-23]。自从 1995 年人们发现 Syp 可以结合 Ca²⁺ 以来^[24],对于 Syp 和 Ca²⁺ 的作用一直没有进一步的研究。我们通过观察加入 Ca²⁺ 后Syp 蛋白在脂筏中分布是否发生变化,来模拟研究囊泡融合时 Ca²⁺ 对囊泡蛋白 Syp 分布的影响。结果表明(图 1A), Ca²⁺ 可以明显改变 Syp 的分

布,即促使 Syp 由非脂筏蛋白转变为脂筏结合蛋白。提示在 Ca²⁺ 引发的递质释放过程中,Syp 与脂筏的结合是有变化的。

由于脂筏的 Triton 不溶性具有胆固醇依赖性和温度依赖性[25,26],因此抽提胆固醇或升高温度会破坏脂筏,使之溶于 Triton。此特性对于鉴定脂筏非常便利。因此,我们进一步抽提了囊泡的胆固醇,结果显示 Syp 的这种 Ca²⁺ 诱导的 DRM 分布确实是胆固醇依赖的(图 1A);我们又进行了温度敏感实验,结果显示(图 1B)Ca²⁺ 诱导的 Syp 的脂筏分布是温度依赖的。这进一步证明了 Syp 在Ca²⁺ 诱导下进入了典型的脂筏区。而作为对照(图 2), Syb 在囊泡脂筏中的分布基本没有变化[27];非脂筏蛋白 Rabphilin3A、Synapsin 、Rab3a 仍是非脂筏蛋白[26,27]。

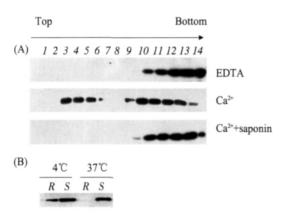


Fig.1 Analysis of the raft association of Syp I. (A) Ca²⁺ triggers the association of Syp I with the raft fraction of synaptic vesicles, which disappears after the cholesterol extraction by saponin; (B) The effect of Ca2+ on the distribution of Syp I is temperature-dependent. Rafts were prepared from synaptic vesicles using 1% Triton X-100 in the presence of 4 mmol/L EDTA or 1 mmol/L Ca²⁺. Ca2++Saponin: using saponin to extract cholesterol in the presence of 1 mmol/L Ca2+. 37°C was applied with a control of 4°C. Detergent resistant raft fractions, solubilized fractions, S. Synaptic vesicles isolated from rat brain were solubilized in cold 1% Triton X-100 and fractionated on a discontinuous sucrose gradient. gradient fractions (fractions 1-14) correspond to equal divisions from the top to the bottom of the tube. Equal volumes of each gradient fraction were separated by SDS-PAGE and transferred to nitrocellulose membrane for immunoblot analysis using the antibody against Syp I. The fractions 4-6 were pooled as the raft fractions; the fractions 10-13 were pooled as the solubilized fractions

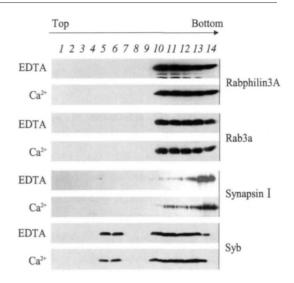
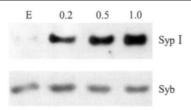
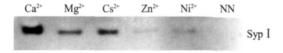



Fig.2 The presence of Ca²⁺ has no influence on the raft association of other proteins on the synaptic vesicles. Synaptic vesicles were treated using 1% Triton X-100 in the presence of 4 mmol/L EDTA or 1 mmol/L Ca²⁺, and then fractionated on a discontinuous sucrose gradient. The gradient fractions (fractions 1-14) correspond to equal divisions from the top to the bottom of the tube. Equal volumes of the gradient fractions from were separated by SDS-PAGE and transferred to nitrocellulose for immunoblot analysis by using specific antibodies against the indicated proteins

2.2 Syp I 蛋白的脂筏分布对 Ca²⁺的敏感性和特 异性

在 Ca²⁺ 的促进下 Syp 可进入脂筏,那么 Syp 对多大浓度的 Ca²⁺ 有反应,Syp 是否对所 有的二价阳离子都有反应,也就是 Syp 蛋白的脂 筏分布对 Ca²⁺ 的敏感性和特异性是我们接下来要 研究的问题。


有研究认为在 Ca²⁺ 信号到来时,突触前膜附近的 Ca²⁺ 浓度可以在瞬间提高到 0.2 mmol/L 甚至 更高 [28.29],因此,我们选择了 0 (4 mmol/L EDTA)、0.2、0.5、1.0 mmol/L 四种浓度的 CaCl₂ 进行检测。结果显示(图 3),在低至 0.2 mmol/L Ca²⁺ 的条件下,Syp 就可以明显在脂筏分布;而对照 Syb 蛋白在脂筏的分布没有随 Ca²⁺ 浓度发生明显变化。这意味着 Syp 的这种分布状态的改变在生理条件下是可能发生的。

178

Fig.3 Analysis the raft association of Syp I and Syb under the different concentration of Ca²⁺. E, 0.2, 0.5, 1.0 represent 4 mmol/L EDTA, 0.2, 0.5, 1.0 mmol/L CaCl₂, respectively. Synaptic vesicles isolated from rat brain were solubilized in cold 1% Triton X-100 and fractionated on a discontinuous sucrose gradient. The gradient fractions (fractions 1-14) correspond to equal divisions from the top to the bottom of the tube. Insoluble lipid rafts have a lower buoyant density and float to the interface between the 30% and 5% sucrose layers. The fractions 4-6 were pooled as the raft fractions. Equal volumes of each example were separated by SDS-PAGE and transferred to nitrocellulose for immunoblot analysis using specific antibodies against Syp I and Syb

我们还采用多种二价阳离子对囊泡进行处理,以检测 Syp 对于不同离子的反应情况。结果表明(图 4), Ca²+对 Syp 进入脂筏的促进作用最强烈, Mg²+和 Cs²+也有明显的促进作用。而 Zn²+和 Ni²+对 Syp 进入脂筏几乎没有促进作用。这些结果说明 Syp 进入脂筏具有一定的离子特异性。Ca²+是细胞内重要的第二信使以及囊泡释放的重要触发信号[28, 29], 因此 Syp 对 Ca²+的响应可能更具有生理意义。

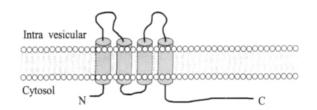


Fig.4 Analysis of the raft association of Syp I under the different bivalent cations. Synaptic vesicles isolated from rat brain were solubilized in cold 1% Triton X-100 with the presence of 1.0 mmol/L of Ca²⁺, Mg²⁺, Cs²⁺, Zn²⁺, or Ni²⁺, respectively, and then fractionated on a discontinuous sucrose gradient. The gradient fractions (fractions 1-14) correspond to equal divisions from the top to the bottom of the tube. Insoluble lipid rafts have a lower buoyant density and float to the interface between the 30% and 5% sucrose layers. The fractions 4-6 were pooled as the raft fractions. Equal volumes of each example were separated by SDS-PAGE and transferred to nitrocellulose for immunoblot analysis using the antibody specific for Syp I. NN: the blank control

2.3 Syp I 的胞质区在其 Ca²⁺诱导的脂筏分布中的 作用

2008年

Syp 是最早发现的囊泡蛋白之一^[9],占囊泡表面总蛋白量的 7%。它是一个四次跨膜的蛋白质^[30],N、C端都在胞质里(图 5)^[31]。其中 Syp蛋白的 C端胞质区含有十个典型的五肽重复序列,受到人们的广泛关注:人们发现 Syp蛋白的 C端胞质区可以结合 dynamin^[32],也可以结合 AP-1 复合体中的 adaptin^[16],并且有研究报道 Syp 的 Ca²⁺结合域在其 C端胞质区^[33-36]。因此我们推测 C端胞质区对 Ca²⁺诱导的 Syp 的脂筏分布行为具有一定的作用,并进一步通过观察 Syp 的 C端胞质区删除后脂筏分布是否发生变化,以及 Ca²⁺是否还影响其脂筏分布,来研究 Ca²⁺诱导的 Syp 脂筏分布的机制。

Fig.5 Schematic representation of Syp I [30]. Syp I is an integral membrane protein with four transmembrane domains and cytoplasmic N and C termini. The C terminus is larger

首先我们在 293T 细胞中转染表达 Syp 蛋白,转染后的细胞分别用 EDTA 和 Ca²+ 处理并分离提取脂筏。结果显示(图 6A), Ca²+ 可以明显诱导Syp 蛋白进入 293T 细胞的脂筏,表明 Syp 在 293T 细胞内同样存在 Ca²+ 诱导的脂筏结合。分别表达 Syp 的胞质区缺失突变体 Syp¹-223 和 Syp¹-230的 293T 细胞也经同样的两种条件处理。结果显示(图 6B): Syp¹-223 (C端胞质区完全删除的突变体,仅含 N端胞质区和跨膜区)对 Ca²+ 没有响应,无论在何种条件下都完全不与脂筏结合,说明 Syp蛋白的 N端胞质区和跨膜区不能单独和脂筏结合且没有感受 Ca²+ 而进入脂筏的能力;而保留了部分 C端胞质区的 Syp¹-230 仍可明显受 Ca²+ 诱导进入细胞脂筏(图 6C),说明 Syp 的 C端胞质区对于其 Ca²+ 依赖的脂筏分布非常重要。

Fig.6 Association of Syp I, Syp¹⁻²²³ and Syp¹⁻²⁶⁰ with rafts in 293T cells. Syp I (A), Syp¹⁻²²³ (B) and Syp¹⁻²⁶⁰ (C) were expressed in 293T cells respectively and rafts were prepared from these cells using 1% Triton X-100 in the presence of 4 mmol/L EDTA or 1 mmol/L Ca²⁺. Cells were solubilized in cold 1% Triton X-100 and fractionated on a discontinuous sucrose gradient. The gradient fractions (fractions 1-14) correspond to equal divisions from the top to the bottom of the tube. Equal volumes of the gradient fractions from were separated by SDS-PAGE and transferred to nitrocellulose for immunoblot analysis by using antibody against the Xpress-tag of the plasmid

综上所述,我们发现囊泡膜上大量存在的 Syp 蛋白的脂筏分布明显受到 Ca²⁺ 的特异性调控:无 Ca²⁺ 的条件下 Syp 为典型的非脂筏蛋白;而经低浓度的 Ca²⁺ 处理后, Syp 可以明显转变为脂筏结合蛋白。这种作用在生理条件(较低浓度 Ca²⁺ 时)即可发生,暗示这一现象具有其生理意义。

最后,我们研究了 Syp 受 Ca²⁺ 诱导进入脂筏的分子机制,发现这一现象依赖于 Syp 的 C 端胞质区。Syp 蛋白受 Ca²⁺ 信号诱导的脂筏定位,很可能是神经细胞在空间和时间上调控 Syp 的活性或状态,或调节其构成融合孔道等功能的一种方式。

参考文献:

[1] Chamberlain LH, Gould GW. The vesicle- and target-SNARE proteins that mediate Glut4 vesicle fusion are localized in detergent-insoluble lipid rafts present on distinct intracellular membranes. J Biol Chem, 2002,277 (51): 49750~49754

- [2] Chamberlain LH, Burgoyne RD, Gould GW. SNARE proteins are highly enriched in lipid rafts in PC12 cells: implications for the spatial control of exocytosis. Proc Natl Acad Sci USA, 2001,98(10):5619~5624
- [3] Lang T, Bruns D, Wenzel D, Riedel D, Holroyd P, Thiele C, Jahn R. SNAREs are concentrated in cholesterol-dependent clusters that define docking and fusion sites for exocytosis. EMBO J, 2001,20(9):2202~2213
- [4] Pombo I, Rivera J, Blank U. Munc18-2/syntaxin3 complexes are spatially separated from syntaxin3-containing SNARE complexes. FEBS Letters, 2003,550(1-3):144~148
- [5] Xia FZ, Gao XD, Kwan E, Lam PP, Chan L, Sy K, Sheu L, Wheeler MB, Gaisano HY, Tsushima RG. Disruption of pancreatic beta-cell lipid rafts modifies K(v)2.1 channel gating and insulin exocytosis. J Biol Chem, 2004,279 (23): 24685~24691
- [6] Gil C, Soler-Jover A, Blasi J, Aguillera J. Synaptic proteins and SNARE complexes are localized in lipid rafts from rat brain synaptosomes. Biochem Biophys Res Commun, 2005, 329(1):117~124
- [7] Salaun C, Gould GW, Chamberlain LH. Lipid raft association of SNARE proteins regulates exocytosis in PC12 cells. J Biol Chem, 2005,280(20):19449~19453
- [8] Evans GJO, Cousin MA. Tyrosine phosphorylation of synaptophysin in synaptic vesicle recycling. Biochem Soc Trans, 2005,33(6):1350~1353
- [9] Phelan P, Gordon-Weeks PR. Widespread distribution of synaptophysin, a synaptic vesicle glycoprotein, in growing neurites and growth cones. Eur J Neurosci, 1992,4 (11): 1180~1190
- [10] Russelakis-Carneiro M, Hetz C, Maundrell K, Soto C. Prion replication alters the distribution of synaptophysin and caveolin 1 in neuronal lipid rafts. Am J Pathol, 2004,165(5): 1839~1848
- [11] Simons K, van Meer G. Lipid sorting in epithelial cells. Biochemistry, 1988,27(17):6197~6202
- [12] 杨福愉. 生物膜结构研究的一些进展. 生物化学与生物物理进展, 2003,30(4):495~502
- [13] Sevlever D, Pickett S, Mann KJ, Sambamurti K, Medof ME, Rosenberry TL. Glycosylphosphatidylinositol-anchor intermediates associate with Triton-insoluble membranes in subcellular compartments that include the endoplasmic reticulum. Biochem J, 1999,343(3):627–635
- [14] 李春雷, 段文娟, 杨福愉, 张旭家. 肌质网中存在 Caveolin-3 锚钉的脂筏微区. 生物物理学报, 2006,22(增刊):281
- [15] He L, Lv JH, Zhou QH, Sui SF. Lipid Rafts Identified on Synaptic Vesicles from Rat Brain. Tsinghua Sci Technol, 2006,11(4):452~458
- [16] Horikawa HP, Kneussel M, El Far O, Betz H. Interaction of synaptophysin with the AP-1 adaptor protein gamma-adaptin. Mol Cell Neurosci, 2002,21(3):454~462
- [17] Brown DA. Lipid rafts, detergent-resistant membranes, and

- raft targeting signals. Physiology, 2006,21:430~439
- [18] Janz R, Südhof TC, Hammer RE, Uni V, Siegelbaum S, Bolshakov VY. Essential roles in synaptic plasticity for synaptogyrin and synaptophysin . Neuron, 1999,24 (3): 687-700
- [19] Valtorta F, Pennuto M, Bonanomi D, Benfenati F. Synaptophysin: leading actor or walk-on role in synaptic vesicle exocytosis? Bioessays, 2004,26(4):445~453
- [20] Yelamanchili SV, Reisinger C, Becher A, Sikorra S, Bigalke H, Binz T, Ahnert-Hilger G. The C-terminal transmembrane region of synaptobrevin binds synaptophysin from adult synaptic vesicles. Eur J Cell Biol, 2005,84(4):467~475
- [21] Reisinger C, Yelamanchili SV, Hinz B, Mitter M, Becher A, Bigalke H, Ahnert-Hilger G. The synaptophysin/synaptobrevin complex dissociates independently of neuroexocytosis. J Neurochem, 2004,90(1):1~8
- [22] Thiele C, Hannah MJ, Fahrenholz F, Huttner WB. Cholesterol binds to synaptophysin and is required for biogenesis of synaptic vesicles. Nat Cell Biol, 2000,2(1):42~49
- [23] Tarsa L, Goda Y. Synaptophysin regulates activity-dependent synapse formation in cultured hippocampal neurons. Proc Natl Acad Sci USA, 2002,99(2):1012~1016
- [24] Edelmann L, Hanson PI, Chapman ER, Jahn R. Synaptobrevin binding to synaptophysin — a potential mechanism for controlling the exocytotic fusion machine. EMBO J, 1995,14(2):224~231
- [25] Chamberlain LH. Detergents as tools for the purification and classification of lipid rafts. FEBS Letters, 2004,559(1-3):1~5
- [26] Hooper NM. Detergent-insoluble glycosphingolipid/cholesterolrich membrane domains, lipid rafts and caveolae. Mol Membr Bid. 1999.16:145~156

- [27] Lv JH, He L, Sui SF. Lipid rafts association of synaptotagmin I on synaptic vesicles. Biochemistry (Moscow), 2008,73(3):283~288
- [28] Llin ás R, Sugimori M, Silver RB. Microdomains of high calcium concentration in a presynaptic terminal. Science, 1992,256(5057):677~679
- [29] Augustine GJ, Neher E. Calcium requirements for secretion in bovine chromaffin cells. J Physiol, 1992,450:247~271
- [30] Alder J, Kanki H, Valtorta F, Greengard P, Poo MM. Overexpression of synaptophysin enhances neurotransmitter secretion at xenopus neuromuscular synapses. J Neurosci, 1995,15(1):511~519
- [31] Johnston PA, Jahn R, Südhof TC. Transmembrane topography and evolutionary conservation of synaptophysin. J Biol Chem, 1989,264(2):1268~1273
- [32] Daly C, Ziff EB. Ca²⁺-dependent formation of a dynamin-synaptophysin complex: potential role in synaptic vesicle endocytosis. J Biol Chem, 2002,277(11):9010~9015
- [33] Yin Y, Dayanithi G, Lemos JR. Ca²⁺-regulated, neurosecretory granule channel involved in release from neurohypophysial terminals. J Physiol, 2002,539:409~418
- [34] Arthur CP, Stowell MH. Structure of synaptophysin: a hexameric MARVEL-domain channel protein. Structure, 2007, 15:707-714
- [35] Rehm H, Wiedenmann B, Betz H. Molecular characterization of synaptophysin, a major calcium-binding protein of the synaptic vesicle membrane. EMBO J, 1986,5: 535~541
- [36] Wiedenmann B, Franke WW. Identification and localization of synaptophysin, an integral membrane glycoprotein of Mr 38,000 characteristic of presynaptic vesicles. Cell, 1985,4: 1017~1028

Ca2+ TRIGGERED RAFT ASSOCIATION OF SYNAPTOPHYSIN

LÜ Ji-hua, HE Li, SUI Sen-fang
(Department of Biological Sciences & Biotechnology, State-Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua University, Beijing 100084, China)

Abstract: In the work, the authors studied the effect of Ca^{2+} on the distribution of Synaptophysin (Syp) and found that the raft association of Syp was greatly promoted by Ca^{2+} . Without Ca^{2+} , Syp was a nonraft protein, while under the condition with Ca^{2+} , syp became a raft protein. The authors further studied the mechanism of the Ca^{2+} -triggered raft association of Syp . They found that this Ca^{2+} -triggered raft association was dependent on the C-terminal cytoplasmic domain of Syp , which suggested that this domain was important in such regulation.

Key Words: Synaptophysin; Lipid rafts; Ca2+

This work was supported by grants from The National Natural Sciences Foundation of China (30670501, 30628007) and The National Basic Research Program of China (2004 CB720005)

Received: Mar 26, 2008

Corresponding author: SUI Sen-fang, Tel: +86(10)62784768, Fax: +86(10)62793367, E-mail: suisf@mail.tsinghua.edu.cn