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Fig.1 Analysis of the raft association of Syp [ . (A) Ca*
triggers the association of Syp | with the raft fraction of
which disappears after the cholesterol
(B) The effect of Ca* on the
distribution of Syp | is temperature-dependent. Rafts were

synaptic vesicles,

extraction by saponin;

prepared from synaptic vesicles using 1% Triton X-100 in
the presence of 4 mmol/L EDTA or 1 mmol/L Ca*.
Ca’+Saponin: using saponin to extract cholesterol in the
presence of 1 mmol/L Ca*. 37C was applied with a
control of 4°C . Detergent resistant raft fractions, R;
solubilized fractions, S. Synaptic vesicles isolated from rat
brain were solubilized in cold 1% Triton X-100 and
gradient.  The

correspond to equal

fractionated on a discontinuous
gradient fractions (fractions 1-14)
divisions from the top to the bottom of the tube. Equal

Sucrose

volumes of each gradient fraction were separated by
SDS-PAGE and transferred to nitrocellulose membrane for
immunoblot analysis using the antibody against Syp I . The
fractions 4-6 were pooled as the raft fractions; the fractions

10-13 were pooled as the solubilized fractions

the presence of 4 mmol/L EDTA or 1 mmol/L Ca* and
then fractionated on a discontinuous sucrose gradient. The
gradient fractions (fractions 1-14) correspond to equal
divisions from the top to the bottom of the tube. Equal
volumes of the gradient fractions from were separated by
SDS-PAGE and transferred to nitrocellulose for immunoblot

analysis by using specific antibodies against the indicated
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Fig.3 Analysis the raft association of Syp [ and Syb
under the different concentration of Ca*. E, 0.2, 0.5, 1.0
represent 4 mmol/L EDTA, 0.2, 0.5, 1.0 mmol/L CaCl,
respectively. Synaptic vesicles isolated from rat brain were
solubilized in cold 1% Triton X-100 and fractionated on a
The
(fractions 1-14) correspond to equal divisions from the top
to the bottom of the tube.
lower buoyant density and float to the interface between
the 30% and 5% sucrose layers. The fractions 4-6 were

discontinuous sucrose gradient. gradient fractions

Insoluble lipid rafts have a

pooled as the raft fractions. Equal volumes of each

example were separated by SDS-PAGE and transferred to

nitrocellulose  for immunoblot analysis using specific
antibodies against Syp I and Syb
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Fig.4 Analysis of the raft association of Syp | under the
different bivalent cations. Synaptic vesicles isolated from rat
brain were solubilized in cold 1% Triton X-100 with the
presence of 1.0 mmol/L of Ca*, Mg", Cs*, Zn*, or Ni¥,
and then fractionated on a discontinuous
1-14)
correspond to equal divisions from the top to the bottom
of the tube.
density and float to the interface between the 30% and 5%

respectively,
sucrose gradient. The gradient fractions (fractions
Insoluble lipid rafts have a lower buoyant

sucrose layers, The fractions 4-6 were pooled as the raft
fractions. Equal volumes of each example were separated
by SDS-PAGE
immunoblot analysis using the antibody specific for Syp 1.
NN: the blank control

and transferred to nitrocellulose for
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Fig.5 Schematic representation of Syp [ ™. Syp [ is an

integral membrane protein with four transmembrane
domains and cytoplasmic N and C termini. The C terminus
is larger
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Fig.6 Association of Syp [, Syp™ and Syp"® with rafis
in 293T cells. Syp [ (A), Syp"™ (B) and Syp"™ (C) were
expressed in 293T cells respectively and rafts were
prepared from these cells using 1% Triton X-100 in the
presence of 4 mmol/L EDTA or 1 mmol/L Ca*. Cells were
solubilized in cold 1% Triton X-100 and fractionated on a
discontinuous sucrose gradient. The gradient fractions
(fractions 1-14) correspond to equal divisions from the top
to the bottom of the tube. Equal volumes of the gradient
fractions separated by SDS-PAGE and

transferred to nitrocellulose for immunoblot analysis by

from were

using antibody against the Xpress-tag of the plasmid
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Ca* TRIGGERED RAFT ASSOCIATION OF SYNAPTOPHYSIN

LU Ji-hua, HE Li, SUI Sen-fang
Department of Biological Sciences & Biotechnology, State-Key Laboratory of
Biomembrane and Membrane Biotechnology, Tsinghua University, Beijing 100084, China

Abstract: In the work, the authors studied the effect of Ca** on the distribution of Synaptophysin
(Syp ) and found that the raft association of Syp  was greatly promoted by Ca?. Without Ca*, Syp
was a nonraft protein, while under the condition with Ca*, syp  became a raft protein. The authors
further studied the mechanism of the Ca*-triggered raft association of Syp . They found that this
Ca*-triggered raft association was dependent on the C-terminal cytoplasmic domain of Syp , which
suggested that this domain was important in such regulation.
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