用荧光共振能量转移研究 synaptotagmin 胞质部分的寡聚化

刘京国. 隋森芳

(清华大学生物科学与技术系,生物膜与膜生物工程国家重点实验室,北京100084)

摘要:目前人们公认 synaptotagmin 在神经递质释放过程中作为钙离子感受器而发挥作用。以前的研究发现,synaptotagmin 存在两种形式的寡聚化,一种是通过跨膜区以及随后的中间链部分介导的寡聚化;另一种是通过胞质部分(C_2AB)介导的寡聚化。对于后者有很多争议。在这篇文章中,作者用荧光共振能量转移的方法,在尽可能接近生理的条件下,证明了 C_2AB 在有细胞膜和游离的钙离子的条件下能够寡聚化。而且,抽提细胞膜上的胆固醇或者封闭膜上的磷酸肌醇二磷酸能抑制 C_2AB 在膜上的寡聚。

关键词: Synaptotagmin; 蛋白寡聚化; 荧光共振能量转移

学科分类号: Q735

0 引 言

神经递质的释放是由动作电位引发神经突触处 钙离子内流导致突触囊泡和突触前膜融合而引起 的[1]。目前越来越多的证据表明, synaptotagmin 是 介导钙离子信号和突触囊泡与突触前膜融合的一个 因子。例如, 敲除 synaptotagmin 基因能抑制依赖 钙离子的递质的快速释放,而不影响非钙离子依赖 的递质的释放回。Synaptotagmin 的胞质部分(后称 C₂AB) 上含有钙离子结合位点,而且其与 SNAP-25、syntaxin、SNARE 复合体、带负电荷的 磷脂等的结合都依赖钙离子[3-6]。在钙离子存在时, C₂AB 还能促进 SNARE 蛋白介导的脂质体融合[7]。 此外, C₂AB 还能在钙离子存在时解除 complexin 对 SNARE 蛋白介导脂质体融合的抑制^[8]。 Synaptotagmin 除了能与别的蛋白结合外,还可以与自己或 其同源物结合成同源或异源的寡聚体。Synaptotagmin 的寡聚化有两种方式,一是通过跨膜区和随后 的一段中间链介导的具有 SDS 抗性的寡聚体[9.10]; 另一种是通过 CAB 介导的寡聚体。以前有文章报 道, C2AB 能在钙离子存在的条件下与 C2AB 结 合[11-13]。但是后来证明,这种结合是由于在制备蛋 白时核酸污染引起的[14]。但是我们实验室用电镜方 法证明,如果存在带负电荷的磷脂和钙离子,无核 酸污染的 C₂AB 还是能形成寡聚体^[15]。由于电镜的 研究方法过于单一,而且不能分析在细胞内是否也 能形成寡聚体,因此在本文中,我们尝试用荧光共

振能量转移的方法来研究 C₂AB 的寡聚情况。

荧光共振能量转移是能量通过分子间的电偶极作用从一个激发态的供体分子转移到其临近的受体分子的一个无辐射的过程。目前,它被广泛地应用于研究蛋白质间的相互作用、蛋白构象的变化等,因此荧光共振能量转移又称为光谱尺^[16]。在本文中,我们通过荧光共振能量转移在尽可能接近生理条件下研究 C₂AB 的寡聚。并证实 C₂AB 在细胞膜上,在有游离的钙离子的条件下能够发生寡聚。

1 材料与方法

1.1 材料

 C_2AB 的 cDNA 由美国威斯康辛大学的 Chapman ER 博士提供。293T 细胞由我们实验室保存。新霉素、甲基 - - 环胡精购自 sigma 公司。ECL 试剂盒购自天为时代公司。 C_2AB 的多克隆抗血清由我们实验室制备。

1.2 方法

1.2.1 表达质粒的构建

将 CFP 和 YFP 分别融合在 CAB 的 N 端,然

收稿日期: 2007-03-26

基金项目: 国家重点基础研究发展规划项目(973项目)

(2004CB720005)

通讯作者: 隋森芳, 电话: (010)62784768,

E-mail: suisf@mail.tsinghua.edu.cn

后将这两个融合体分别插入 pcDNA3.1(+)上,得到pcDNA3.1 (+)-CFP-C₂AB 和 pcDNA3.1 (+)-YFP-C₂AB。为了使 C₂AB 失去结合钙离子的能力,C₂AB 上的钙结合位点 230、232、363、365 位的天冬氨酸突变为天冬氨酰,即 C₂AmBm^[5,13],得到pcDNA3.1(+)-YFP-C₂AmBm。根据以前的文献报道,将 C₂AB 上 326、327 位的赖氨酸突变为丙氨酸,即 C₂ABbkk,将失去寡聚化的能力^[17],其相应的表达质粒为 pcDNA3.1(+)-YFP-C₂ABbkk。此外,还将 CFP和 YFP通过 10 个氨基酸的短肽连在一起并插入到 pcDNA3.1(+)上,得到 pcDNA3.1(+)-CFP-YFP。

1.2.2 细胞培养及转染

293T 细胞在含有 10%的新生牛血清以及 100 U/ml 青霉素、100 mg/L 链霉素的 DMEM 培养基中,在37,5% CO₂条件下培养。

表达质粒的转染用磷酸钙转染法。在 CFP-C₂AB 和 YFP-C₂AB 共转染时,每 100 mm 的培养板使用转染混合物的配比是 2 xHEPES 400 μ l、 H_2 O 350 μ l、2 mol/L CaCl₂ 50 μ l、质粒 (CFP-C₂AB YFP-C₂AB 按 1 2 的比例混合) 10 μ Q。转染后 $48\sim72$ h 内收集细胞。

1.2.3 转染后细胞膜组分和上清组分的制备

将共转染后的细胞消化下来,测定细胞浓度后,将细胞平均分为 3 份。一份用 PBS处理,一份用 20 mmol/L 甲基 - - 环糊精处理,一份用 20 mmol/L 新霉素处理。在 37 解育 30 min。用 PBS 洗 3 次后,5 x10⁷ 个细胞加 0.5 ml 低渗溶液 [20 mmol/L Tris-Cl (pH 7.8),2 mmol/L DTT,2 mmol/L CaCl₂,蛋白酶抑制剂〕在冰浴中处理 15 min 后,用匀浆器制成匀浆。然后补加 NaCl 到 0.15 mol/L,离心 800 xg,4 10 min,上清部分用 50 000 xg,4 离心 30 min。最后 5 x10⁷ 个细胞的膜组分用 300 μl 缓冲液[20 mmol/L Tris-Cl (pH 7.8),2 mmol/L DTT,150 mmol/L NaCl,

2 mmol/L CaCl。以及蛋白酶抑制剂〕重悬。

对 CFP-YFP 融合蛋白,则只取上清。同时为了检验 CFP-YFP 融合蛋白确实能够发生 FRET,在相应的上清中用 20 mg/L 蛋白激酶 K 在 37 处理 10 min。

1.2.4 融合蛋白在 293T 细胞中表达的检测

为了确认我们构建的表达质粒能在 293T 细胞中正确表达,我们将上面制备的细胞膜组分以及上清组分分别用 12.5%的 SDS-PAGE 分析并用抗 C₂AB 的抗血清检测。

1.2.5 体外荧光共振能量转移的检测以及荧光数据 的处理

体外荧光检测的方法根据文献[18]并略作修改:取50 µl 膜组分悬液或细胞上清组分悬液,补加缓冲液到150 µl。荧光仪为F4500,对于FRET和CFP,激发波长为436 nm,检测的发射谱为450~560 nm;对YFP,激发波长为505 nm,检测的发射谱为515~560 nm。检测温度为室温,激发和发射狭缝均为5 nm,电压为700 V。为了便于比较不同处理引起的荧光共振能量转移的效率的变化,我们将得到的原始光谱作归一化处理。即对于每一条光谱对应的数值,我们把CFP在475 nm处的荧光值定为1,然后其他的在同一光谱上的数值根据这个比例作相应的变化。

2 实验结果

2.1 融合蛋白在细胞中的正确表达

为了进一步确认我们构建的融合基因能在细胞中正常表达,我们用 C₂AB 的抗血清分别检测 CFP-C₂AB 和 YFP-C₂AB 在 293T 细胞中的表达情况。从图 1 中可以看出,CFP-C₂AB 和 YFP-C₂AB 都能在 293T 细胞中正确表达,而且很多表达的融合蛋白能结合到细胞膜上,这与以前关于 C₂AB 与膜结合的特性是一致的^[3,4,6]。

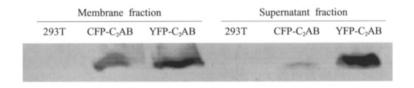


Fig.1 The determination of CFP-C₂AB and YFP-C₂AB expressing in 293T cells. CFP-C₂AB and YFP-C₂AB plasmids were transfected into 293T cells, respectively. After further culturing for 48 h, the supernatant and the membrane fractions were prepared and subjected to the 12.5% SDS-PAGE and visualized by the serum of C₂AB

2.2 C_2AB 的寡聚需要细胞膜组分和游离的钙离子的存在

为了检测 CFP和 YFP之间的荧光共振能量转移的特征,我们首先将 CFP和 YFP用 10 个氨基酸的短肽连在一起。这时,用 CFP的激发波(436 nm)激发融合蛋白,在 525 nm 处会产生很强的荧光共振能量转移信号,即 YFP的发射光谱。但是如果用蛋白酶 K 将 CFP和 YFP之间的链切断,则荧光共振能量转移信号会消失(见图 2A)。这进一步说明 CFP-YFP之间确实能发生共振能量转移。

然后我们将 CFP-C₂AB 和 YFP-C₂AB 共转染到 293T 细胞中,制备细胞膜组分和上清组分,并检测 C₂AB 的寡聚是否需要膜组分。从图 2B 中我们可以看到,在有游离的钙离子存在时,上清的 C₂AB 不能产生 FRET 信号,但是膜组分的 C₂AB

却能产生很强的 FRET 信号。这说明 C₂AB 的寡聚需要膜组分的存在。由于上清中的 C₂AB 不论有无游离的钙离子,都不能产生 FRET 信号(图 2C),随后我们在有膜组分存在的情况下分析钙离子对 C₂AB 寡聚的影响。从图 2D 中可以看出,相对于不加 EGTA 的情况,C₂AB 在加入 EGTA 时其 FRET 信号较弱,但是在这种情况下,仍然有一定的 FRET 信号。这说明,钙离子能促进 C₂AB 在细胞膜上的寡聚。以前的文献报道,如果将 C₂AB 上的钙离子结合位点突变,即 C₂AmBm,则 C₂AmBm 既丧失结合钙离子的能力,又不能与细胞膜结合[5,13,17,19]。在我们的检测体系中,C₂AmBm 主要富集在上清组分(结果略),同时它也不能与 CFP-C₂AB 产生荧光共振能量转移(见图 2E)。这些结果都表明 C₂AB 的寡聚需要细胞膜和钙离子。

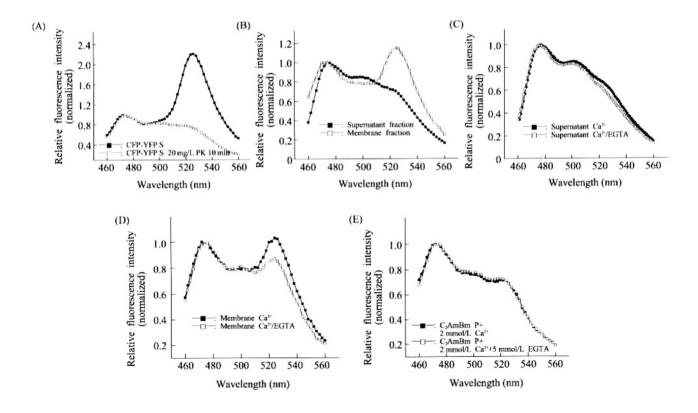
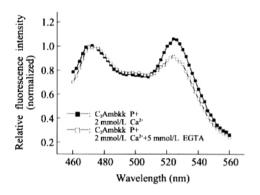



Fig.2 The oligomerization of C₂AB depends on the cell membrane and free calcium. (A) The FRET spectra of CFP-YFP fusion protein in the supernatant of 293T cells. (B) The comparison of FRET spectra between the supernatant fraction and the membrane fraction in the 293T cells in the presence of free calcium. The effect of calcium on the oligomerization of C₂AB (C) in the supernatant fraction, C₂AB (D) and C₂AmBm (E) on the membrane were also determined. In each experiment, the sample was excited by 436 nm and the emission spectra 450~560 nm was collected. Each independent assay was repeated at least twice

2.3 C_2AB 上 326、327 位的赖氨酸不是介导 C_2AB 寡聚的关键位点

以前有文献报道, C_2AB 上的 326、327 位的赖氨酸是介导 C_2AB 寡聚的位点[17]。同样,我们也将 C_2AB 上的 326、327 位的赖氨酸突变为丙氨酸,即 C_2AB bkk,来分析这两个位点对 C_2AB 寡聚的影响。从图 3 中可以看出,与野生型 C_2AB 的寡聚特征(见图 2D)类似, C_2AB bkk 在有钙离子时也能产生很强的 FRET 信号,在没有钙离子时也有较低的 FRET 信号。这说明 326 和 327 位的赖氨酸可能不是介导 C_2AB 寡聚的关键位点。

Fig.3 K326, K327 are not the privotal site that mediate the oligomerization of C₂AB. The CFP-C₂AB and YFP-C₂ABbkk fusion proteins were coexpressed in the 293T cells and the membrane fraction was prepared. The effect of calcium on the oligomerization of CFP-C₂AB and YFP-C₂ABbkk in the membrane was determined. In each experiment, the sample was excited by 436 nm and the emission spectra 450~560 nm was collected. Each independent assay was repeated at least twice

2.4 胆固醇和 PIP_2 能影响 C_2AB 在细胞膜上的寡聚化

以前有文献报道,synaptotgmin 能在脂筏中富集^[20];我们实验室也证明 C₂AB 在有钙离子存在时也能富集在脂筏中(尚未发表的数据)。而脂筏中又富含胆固醇和 PIP2^[21]。因此,我们想知道,胆固醇和 PIP₂ 的存在对 C₂AB 的寡聚化有何影响。根据文献,甲基--环糊精能结合胆固醇从而降低游离的胆固醇的浓度^[22];新霉素则能结合 PIP₂ 而降低细胞膜中的 PIP₂ 的浓度^[23]。因此我们用甲基--环糊精和新霉素封闭细胞膜上的胆固醇和 PIP₂,来分析这两种因子对 C₂AB 的寡聚化的影响。从图 4 中可以看出甲基--环糊精和新霉素处理都能降低FRET 信号。但是其作用能力不同,相对来讲,用

甲基 - - 环糊精处理产生的影响更大。这说明,膜组分上的胆固醇对 C_2AB 的寡聚化影响更大些。但是,我们不能排除新霉素影响低是由于 PP_2 在 C_2AB 寡聚化过程中的作用小,因为可能是我们这样处理细胞并不能完全发挥新霉素结合 PP_2 的能力。

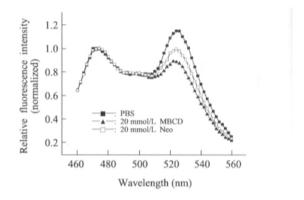


Fig.4 The effect of PIP₂ and cholesterol on the oligomerization of C₂AB. The PIP₂ and cholesterol in the membrane were blocked by incubating the transfected 293T cells with the neomycin (Neo) and Methyl-Beta-Cyclodextrin (MBCD) at 37°C for 30 min, respectively. Then the membranes were prepared and the FRET spectra in each treatment were recorded. In each experiment, the sample was excited by 436 nm and the range of emission spectra was 450~560 nm. Each assay was repeated at least twice

3 讨 论

在神经递质释放过程中, synaptotagmin 被公 认作为钙离子的感受器介导钙离子信号和突触囊泡 和突触前膜的融合。但是,这个过程中的机理目前 还不清楚。以前的文献报道认为,synaptotagmin 能通过跨膜区以及随后的中间链形成有 SDS 抗性 的寡聚体和通过胞质部分(CAB) 形成寡聚 体[9-13]。但是对于后一种寡聚化的存在有很大争议。 认为 C₂AB 的寡聚化是由于在原核细胞中表达纯化 蛋白时核酸污染造成的⒀。后来我们实验室用电镜 的方法证实了 C₂AB 在有钙离子和带负电荷的磷脂 存在时,能形成寡聚体¹⁵。最近,Sudhof TC 和 Rizo J以及他们的同事发现, C,AB 的寡聚是浓度 依赖的[2]。以前这些研究工作用的都是从大肠杆菌 中表达纯化的重组蛋白,这些重组蛋白可能与体内 的天然蛋白在构像上有差异。另外,由于电镜方法 的单一和其设置对照的局限性,因此我们尝试在尽 可能接近生理的条件下检测 C。AB 能否寡聚化。

在本文中,我们利用在细胞中表达的 C₂AB 在尽可能接近天然条件下,证明了 C₂AB 在有膜以 及游离的钙离子存在的条件下,确实能够寡聚。因 为突变掉 CAB 上的钙离子结合位点,则 CAB 既 不与细胞膜结合,也根本不产生 FRET 信号(见 图 2D)。而且,封闭细胞膜上的胆固醇和 PIP2能 降低 FERT 效率,说明 C₂AB 在膜上的寡聚是有区 域选择性的。但是在我们比较钙离子对 C₂AB 寡聚 化的影响时,发现加入 EGTA 后仍然出现 FRET 信号。这可能是由于先前在制备样品时已经存在钙 离子,加入 EGTA 不能完全将游离的钙离子鳌合 掉,因而仍会产生一定的FRET信号。另外,在我 们的检测体系中,发现突变 C2AB 上的 326、327 位的赖氨酸并不显著改变其在膜上的寡聚特征,这 说明,以前在溶液状态中确定的这两个位点实际上 并不是介导 C₂AB 寡聚的关键位点。真正介导 C₂AB 寡聚的位点需要进一步研究。

参考文献:

- [1] Sudhof TC. The synaptic vesicle cycle. Annu Rev Neurosci, 2004.27:509~547
- [2] Geppert M, Goda Y, Hammer RE, Li C, Rosahl TW, Stevens CF, Sudhof TC. Synaptotagmin : a major Ca²⁺ sensor for transmitter release at a central synapse. Cell, 1994,79 (4): 717~727
- [3] Brose N, Petrenko AG, Sudhof TC, Jahn R. Synaptotagmin: a calcium sensor on the synaptic vesicle surface. Science, 1992,256(5059):1021~1025
- [4] Chapman ER. Synaptotagmin: a Ca(2+) sensor that triggers exocytosis? Nat Rev Mol Cell Biol, 2002,3(7):498~508
- [5] Sutton RB, Ernst JA, Brunger AT. Crystal structure of the cytosolic C2A-C2B domains of synaptotagmin . Implications for Ca (2+)-independent snare complex interaction. J Cell Biol, 1999,147(3):589~598
- [6] Bai J, Earles CA, Lewis JL, Chapman ER. Membraneembedded synaptotagmin penetrates cis or trans target membranes and clusters via a novel mechanism. J Biol Chem, 2000,275(33):25427~25435
- [7] Tucker WC, Weber T, Chapman ER. Reconstitution of Ca²⁺-regulated membrane fusion by synaptotagmin and SNAREs. Science, 2004,304(5669):435~438
- [8] Schaub JR, Lu X, Doneske B, Shin YK, McNew JA. Hemifusion arrest by complexin is relieved by Ca²⁺-synaptotagmin . Nat Struct Mol Biol, 2006, 13(8): 748~750
- [9] Fukuda M, Kanno E, Mikoshiba K. Conserved N-terminal cysteine motif is essential for homo- and heterodimer formation of synaptotagmins , , and . J Biol Chem, 1999,274(44):31421~31427
- [10] Fukuda M, Kanno E, Ogata Y, Mikoshiba K. Mechanism of

- the SDS-resistant synaptotagmin clustering mediated by the cysteine cluster at the interface between the transmembrane and spacer domains. J Biol Chem, 2001,276 (43): 40319~40325
- [11] Chapman ER, An S, Edwardson JM, Jahn R. A novel function for the second C2 domain of synaptotagmin. Ca²⁺-triggered dimerization. J Biol Chem, 1996,271(10):5844~5849
- [12] Osborne SL, Herreros J, Bastiaens PI, Schiavo G. Calcium-dependent oligomerization of synaptotagmins and . Synaptotagmins and are localized on the same synaptic vesicle and heterodimerize in the presence of calcium. J Biol Chem, 1999,274(1):59~66
- [13] Desai RC, Vyas B, Earles CA, Littleton JT, Kowalchyck JA, Martin TF, Chapman ER. The C2B domain of synaptotagmin is a Ca(2+)-sensing module essential for exocytosis. J Cell Biol, 2000,150(5):1125~1136
- [14] Ubach J, Lao Y, Fernandez I, Arac D, Sudhof TC, Rizo J. The C2B domain of synaptotagmin is a Ca²⁺-binding module. Biochemistry, 2001,40(20):5854~5860
- [15] Wu Y, He Y, Bai J, Ji SR, Tucker WC, Chapman ER, Sui SF. Visualization of synaptotagmin oligomers assembled onto lipid monolayers. Proc Natl Acad Sci USA, 2003,100(4): 2082~2087
- [16] Stryer L. Fluorescence energy transfer as a spectroscopic ruler. Annu Rev Biochem, 1978,47:819~846
- [17] Chapman ER, Desai RC, Davis AF, Tornehl CK. Delineation of the oligomerization, AP-2 binding, and synprint binding region of the C2B domain of synaptotagmin. J Biol Chem, 1998,273(49):32966~32972
- [18] Liu J, Guo T, Wei Y, Liu M, Sui SF. Complexin is able to bind to SNARE core complexes in different assembled states with distinct affinity. Biochem Biophys Res Commun, 2006, 347(2):413~419
- [19] Chapman ER, Davis AF. Direct interaction of a Ca²⁺-binding loop of synaptotagmin with lipid bilayers. J Biol Chem, 1998,273(22):13995~14001
- [20] Gil C, Soler-Jover A, Blasi J, Aguilera J. Synaptic proteins and SNARE complexes are localized in lipid rafts from rat brain synaptosomes. Biochem Biophys Res Commun, 2005, 329(1):117~124
- [21] Salaun C, James DJ, Chamberlain LH. Lipid rafts and the regulation of exocytosis. Traffic, 2004,5(4):255~264
- [22] Marwali MR, Rey-Ladino J, Dreolini L, Shaw D, Takei F. Membrane cholesterol regulates LFA-1 function and lipid raft heterogeneity. Blood, 2003,102(1):215~222
- [23] Gabev E, Kasianowicz J, Abbott T, McLaughlin S. Binding of neomycin to phosphatidylinositol 4,5-bisphosphate (PIP₂). Biochim Biophys Acta, 1989,979(1):105~112
- [24] Arac D, Chen X, Khant HA, Ubach J, Ludtke SJ, Kikkawa M, Johnson AE, Chiu W, Sudhof TC, Rizo J. Close membrane-membrane proximity induced by Ca(2+)-dependent multivalent binding of synaptotagmin-1 to phospholipids. Nat Struct Mol Biol, 2006,13(3):209~217

THE OLIGOMERIZATION OF THE CYTOPLASMIC DOMAIN OF SYNAPTOTAGMIN: A FLUORESCENCE RESONANCE ENERGY TRANSFER STUDY

LIU Jing-guo, SUI Sen-fang

(Department of Biological Sciences and Biotechnology, State-Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua University, Beijing 100084, China)

Abstract: Synaptotagmin is thought as the calcium sensor that functions during the neurotransmitter release. Previous studies revealed that synaptotagmin has two forms of oligomerization. One is dependent on the transmembrane domain and the subsequent linker. The other one is mediated by the cytoplasmic domain, C_2AB . However, whether or not C_2AB can mediate the oligomerization is still in debate. In this article, using FRET method under the situation close to the native state, the authors demonstrate that C_2AB can form oligomer in the presence of membrane and free calcium. In addition, extracting the cholesterol or blocking PIP_2 on the membrane can inhibit the oligomerization of C_2AB .

Key Words: Synaptotagmin; The oligomerization of protein; Fluorescence resonance energy transfer

This work was supported by a grant from The National Basic Research Program of China (2004CB720005)

Received: Mar 26, 2007

Corresponding author: SUI Sen-fang, Tel: +86(10)62784768, E-mail: suisf@mail.tsinghua.edu.cn