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SUMMARY

HtrA family proteins play a central role in protein
quality control in the bacterial periplasmic space.
DegQ-like proteases, a group of bacterial HtrA
proteins, are characterized by a short LA loop as
compared with DegP-like proteases, and are found
in many bacterial species. As a representative of
the DegQ-like proteases, we report that Escherichia
coli DegQ exists in vivo primarily as a trimer
(substrate-free) or dodecamer (substrate-contain-
ing). Biochemical analysis of DegQ dodecamers re-
vealed that the major copurified protein substrate is
OmpA. Importantly, wild-type DegQ exhibited
a much lower proteolytic activity, and thus higher
chaperone-like activity, than DegP. Furthermore,
using cryo-electron microscopy we determined
high-resolution structures of DegQ 12- and 24-mers
in the presence of substrate, thus revealing the struc-
tural mechanism by which DegQ moderates its
proteolytic activity.

INTRODUCTION

To a great extent, cell life depends on the function of proteins,

most of which have marginally stable structures and are thus

subjected to continuous quality control to keep them in a func-

tional state. Failure of this process can lead to severe diseases

(Sitia and Braakman, 2003). Molecular chaperones and prote-

ases, both binding to unfolded or misfolded proteins, are two

protein families that cells employ to perform such quality control

processes (Lindquist and Craig, 1988; Wickner et al., 1999).

DegP (also named protease Do and HtrA: high temperature

requirement) was the first HtrA protease identified, and was

found to be an essential protein for cell survival of Escherichia

coli at elevated temperatures (Lipinska et al., 1988; Strauch

and Beckwith, 1988). DegP homologous proteins, all of which

comprise the HtrA family, play a central role in the quality control
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process, and have been found in nearly all organisms, including

bacteria, plants, and mammals (Clausen et al., 2002; Pallen and

Wren, 1997; Spiess et al., 1999).

In E. coli, DegP, DegS, and DegQ comprise the HtrA family

proteins in the periplasmic space. In recent years, structural

studies based on X-ray and cryo-electron microscopy (cryo-

EM) have provided functional insights into both DegP and

DegS (Jiang et al., 2008; Krojer et al., 2002, 2008b; Shen et al.,

2009; Wilken et al., 2004). However, the structure and function

of DegQ remains poorly understood. As typical HtrA members,

these proteins contain a conserved N-terminal trypsin-like

protease domain, and one (DegS) or two (DegP and DegQ)

C-terminal PDZ domains (Krojer et al., 2002; Pallen and Wren,

1997; Wilken et al., 2004).

The crystal structures of DegS in both the peptide-free and

peptide-bound states were resolved to be trimers (Wilken

et al., 2004). In the peptide-free state, substrate binding and

catalysis are prevented. After binding of the peptide to the

PDZ domain, the proteolytic activity of DegS is activated (Sohn

et al., 2007, 2009;Walsh et al., 2003;Wilken et al., 2004). Purified

free DegP exists primarily as a resting hexamer, consisting of two

trimers in a staggered face-to-face manner (Jomaa et al., 2007;

Krojer et al., 2002). In the DegP hexamer, the L1 and L2 loops

from each monomer twist into inactive conformations by the

interaction with the LA loop from the opposite trimer (Krojer

et al., 2002). Recent studies by Krojer et al. (2008b) and our

group (Jiang et al., 2008; Shen et al., 2009) have shown that

the DegP hexamer can assemble into high-order 12-, 15-, 18-,

or 24-meric complex structures in the presence of substrates

or on the membrane. In the larger oligomers, the LA loop is set

free and the PDZ1 domain is locked into the proper position by

the L3 loop, and this reposition of the L3 loop promote remodel-

ing of the L1/L2 loops into functional catalytic sites (Krojer et al.,

2010; Krojer et al., 2008b). Thus, forming larger oligomers is

a critical step in initiating the proteolytic activity of DegP.

DegQ is another periplasmic serine protease in E. coli (Bass

et al., 1996; Waller and Sauer, 1996). Unlike DegP, deletion of

the degQ gene seems not to cause any defect in growth, indi-

cating that DegQ is apparently not essential for cell survival,

even at high temperatures (Farn and Roberts, 2004; Mo et al.,

2006; Waller and Sauer, 1996). Transforming with a plasmid
d All rights reserved
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Figure 1. Purified DegQ Exists as Trimers, but Not

Hexamers

(A) Size-exclusion chromatography (SEC) elution profiles

for wild-type DegQ and wild-type DegP. DegQ was eluted

at 10 ml and 13 ml, corresponding to dodecamers and

trimers, respectively, and DegP at 11 ml, corresponding

to hexamers. The protein weight markers are labeled

above.

(B) Sedimentation velocity results for wild-type DegQ

and DegP showing the different c(s) distributions.

(C) Rechromatography of the 13 ml fraction in (A)

produced an identical peak.

(D) SDS-PAGE analysis of the 10 ml (lane 1) and 13 ml

(lane 2) fractions. Mass spectrometry revealed that the

additional band corresponded to OmpA.

(E) Electron micrographs of negative-stain samples from

13 ml (upper) and 10 ml (lower) fractions, showing the

characteristics of DegQ trimers and dodecamers,

respectively. The class-averages of particles are shown

(inset). The box sizes of the class-averages are 14.4 nm

(upper) and 20.6 nm (lower), respectively. Scale bars

represent 50 nm.

See also Figure S1.
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expressing the degQ gene rescues the phenotype of a degP

null strain, suggesting that overexpressed DegQ can function

as a substitute for DegP (Waller and Sauer, 1996). However,

the inside story of DegQ remains incomplete. DegQ and

DegP have similar amino acid sequences (58% identical),

whereas the protease domain, and particularly the LA loop,

exhibit less sequence homology. The LA loop is 40 amino acids

long in DegP, but only 20 in DegQ. Based on phylogenetic anal-

ysis, recent studies (Kim and Kim, 2005; Onder et al., 2008)

suggested that distinct DegP-like and DegQ-like periplasmic

subfamilies exist, and many bacteria, unlike E. coli, have only

one DegQ-like protease in the cell envelope. These DegQ-like

proteases are characterized by short LA loops and are essen-

tial for cell survival under high envelope stress conditions

including heat, chemicals, or pathogens, etc., all of which can

result in protein inactivation and protein unfolding or misfolding

(Kim and Kim, 2005; Onder et al., 2008). Thus, E. coli DegQ

may be a model system for better understanding the molecular

mechanisms involved in the function of other bacterial HtrA

proteins.

In this study, we first undertook a biochemical and EM struc-

tural analysis to characterize the in vivo structural states of

E. coli DegQ. Wild-type DegQ was found to exist primarily as

a trimer and dodecamer in E. coli cell extract. Our data also

demonstrated that dodecameric DegQ contained substrate,

but trimeric DegQ did not. Biochemical analysis of the DegQ
Structure 19, 1328–1337, September 7,
dodecamer complex revealed that the major

copurified protein substrate was OmpA, amajor

component of the outer membrane of E. coli.

Importantly, wild-type DegQ exhibited a much

lower proteolytic activity than DegP. Further-

more, high-resolution structures of DegQ

12-mer/24-mer were obtained by cryo-EM

with protease-deficient DegQ (S187A) in the

presence of substrates, revealing the important

role of PDZ2 domain in the assembly of 12- and
24-mers and providing a structural basis for regulation of the

proteolytic activity of DegQ.

RESULTS

Wild-Type DegQ Exists Primarily as a Trimer
and Dodecamer
X-ray crystallography has shown that DegP exists in the resting

state as a hexamer (Krojer et al., 2002). Previous studies have

shown that the LA loops are essential for maintenance of this

hexamer (Jomaa et al., 2007; Krojer et al., 2010; Sobiecka-Szka-

tula et al., 2009). DegQ has a much shorter LA loop, suggesting

that the oligomeric states of DegQ and DegP may differ. To

determine the in vivo oligomeric state of DegQ, size-exclusion

chromatography (SEC), in combination with sedimentation

velocity (SV) measurement, was performed on E. coli cell

extracts. Wild-type DegP was used as a control. The SEC profile

of wild-type DegP exhibited a major peak at elution volume

11.0 ml, corresponding to the DegP hexamer (Figure 1A), which

was consistent with previous reports (Jiang et al., 2008; Jomaa

et al., 2007). Unexpectedly, wild-type DegQ was isolated mainly

in two fractions at elution volumes 10.0 and 13.0ml, correspond-

ing to molecular masses of approximately 600 (12-mer) and

150 kDa (3-mer), respectively (Figure 1A). The existence of the

10 ml dodecameric DegQ fraction was consistent with the

cross-linking result of Kolmar et al. (1996). Identical results
2011 ª2011 Elsevier Ltd All rights reserved 1329



Figure 2. DegQ Trimers Exhibit Lower

Proteolytic Activity and Higher Chaperone-

like Activity

(A) Proteolytic activity of DegQ and DegP

(0.2 mg/ml) at 37�C and 42�C using resorunfin-

labeled casein as the substrate. The relative

protease activities were calculated by considering

the activity of DegQ at 37�C as 100%. The histo-

grams of DegP are shown in white. Error bars

represent standard deviations (SD) of repeated

measurements.

(B) The chaperone-like activity of DegQ (S187A)

and DegP (S210A) protected DTT-denatured

lysozyme against aggregation. The light-scat-

tering values for the incubated samples were

recorded at 360 nm. Error bars represent SD of

repeated measurements.

(C) SEC elution profile of wild-type DegQ and

b-casein after varying incubation periods. Large

complexes were formed whereas DegQ was de-

grading b-casein. The peak of b-casein and

degraded b-casein are labeled above the profile.

(D) An electron micrographs of negative-stain

wild-type DegQ/b-casein complexes from the

fractions indicated in (C) by the arrows. Class-

averages are shown (inset). The scale bar repre-

sents 50 nm.

See also Figure S2.
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were obtained by SV analysis (Figure 1B). In the DegP sample,

there were two well-resolved species having sedimentation

coefficients of approximately 6S and 13S, corresponding to

trimers and hexamers (Figure 1B). This may be due to small

amount of disassociation of DegP hexamers as revealed before

(Jiang et al., 2008; Krojer et al., 2008b). In the case of DegQ, two

well-resolved species were also detected, but with sedimenta-

tion coefficients of �6S and 16S (Figure 1B). The first peak

appeared in the same position as DegP trimers, suggesting

that they were DegQ trimers. The second peak, however, was

at a point greater than DegP hexamers, implying a dodecameric

state of DegQ (Figure 1B). According to peak heights, the

amount of DegQ dodecamers was higher than trimers, in agree-

ment with the SEC results (Figures 1A and 1B). The 13.0 ml

trimeric DegQ fraction was then reexamined by SEC and no

larger species were detected, ruling out the possibility of self-

assembly of DegQ in solution (Figure 1C). SDS-PAGE revealed

that the 10.0 ml fractions (12-mer) contained an additional

protein band at 30 kDa in addition to DegQ (Figure 1D), which

was further identified to be OmpA by mass spectrometry (see

Figure S1 available online). In SDS-PAGE, folded OmpA

migrates at 30 kDa (Figure 1D), whereas unfolded OmpA

migrates at 35 kDa (Schweizer et al., 1978). The SDS-PAGE

result suggested that the OmpA encapsulated by DegQ is likely

present in folded state.

To further investigate the oligomeric state of DegQ, the 13 ml

and 10 ml fractions were collected and examined by negative-

stain EM. Particle size was estimated to be 10–12 nm in the

13 ml fraction (Figure 1E, upper), consistent with the size of

a DegP trimer (Krojer et al., 2002). Reference-free classification

of the particles indicated clear 3-fold symmetry (Figure 1E,

upper), which resembled the projection of the top view of

a DegP trimer (Krojer et al., 2002). In contrast to the DegQ
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trimers, particles composed of both DegQ and OmpA were

much larger (�16 nm diameter; Figure 1E, lower), with dimension

and shape similar to the DegP dodecamer (Jiang et al., 2008).

Indeed, the class averages of the complexes were similar to

the projections of the DegP dodecamer (Figure 1E, lower) (Jiang

et al., 2008).

The different oligomeric states of DegP and DegQ in vivo

strongly suggest that DegQ may exhibit different proteolytic

and chaperone-like activities from DegP in the cell. Thus, the

trimeric DegQ fraction was subsequently subjected to proteo-

lytic and chaperone assays.

Wild-Type DegQ Exhibits Lower Proteolytic and Higher
Chaperone-like Activities than DegP
The protease activity of DegQ was assessed by incubating re-

sorunfin-labeled casein with the trimeric form of the SEC fraction

of wild-type DegQ. Unexpectedly, wild-type DegQ trimers

(0.2 mg/ml) exhibited much weaker proteolytic activity than

DegP hexamers (0.2 mg/ml) at both 37 and 42�C (Figure 2A).

These data were further confirmed by SDS-PAGE using two

substrates, b-casein or denatured lysozyme. DegP at different

concentrations degraded b-casein much quickly than DegQ

(Figure S2C). In 60 min, nearly all b-casein was completely

degraded by DegP, whereas only a small fraction of b-casein

was degraded by the same amount of DegQ (Figure S2C). In

comparison with b-casein, DegP degraded denatured lysozyme

at a relatively low rate, however, it still exhibited much greater

degradation capability than DegQ (Figure S2D).

We hypothesized that this lower protease activity of DegQ

would be accompanied by a higher chaperone-like activity

compared with DegP. To verify this, we compared the chap-

erone-like activity of DegQ (S187A) with that of DegP (S210A)

at 37�C. As expected, DegQ (S187A) exhibited stronger
d All rights reserved



Figure 3. The Oligomerization of DegQ

Trimer into 12-/24-mer in the Presence of

Different Substrates

(A) SEC elution profiles for DegQ (S187A) in the

presence of denatured lysozyme or b-casein.

(B) Electron micrographs of negative-stain DegQ

(S187A)/lysozyme complexes 12-mer (upper) and

DegQ (S187A)/b-casein complexes 24-mer

(lower). Class-averages for the two different types

of complexes are shown on the right, respectively.

Scale bar represents 50 nm.

(C) An electronmicrograph of negative-stain DegQ

(S187A)/lysozyme complexes from the fraction

indicated in (A) by the arrow, showing the char-

acteristic of DegQ 24-mer. Scale bar represents

50 nm.

See also Figure S3.
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chaperone-like activity toward denatured lysozyme than DegP

(S210A) at 37�C (Figure 2B). In particular, the aggregation of

denatured lysozyme was entirely suppressed by DegQ from

the beginning, whereas it was only partially suppressed by

DegP. In parallel, we tested the ability of DegP to prevent

thermal-induced aggregation of citrate synthase (CS) at 43�C.
Similar to the result from the lysozyme assay, DegQ S187A

had significantly stronger protecting effect against the thermal-

induced aggregation of CS than DegP S210A in solution (Fig-

ure S2A). Further enzymatic activity assay of CS in the two

systems proved that DegQ S187A has stronger protection

capacity against the denatured protein than DegP S210A in

solution (Figure S2B).

Because DegQ exhibited amuch lower rate of degradation, we

next attempted to capture the intermediate state of DegQ during

degradation. After incubating excess b-casein with wild-type

DegQ trimers at 37�C for 15 min, the elution volume shifted

entirely from 13 ml to 8.8 ml on a SEC (Figure 2C), indicating

that most of the wild-type DegQ trimers had assembled into

larger oligomers once degradation begun. Examined by nega-

tive-stain EM and reference-free classification, the 8.8 ml

fraction clearly contained particles of 24-mers, but not trimers

(Figure 2D). Such large complexes represented an active

protease form of DegQ was supported by the fact: after a long

time of incubation (90 min), the peak of b-casein decreased to

a great extent, meanwhile, the peak of degraded b-casein

increased (Figure 2C).

To investigate the causes for DegQ’s higher chaperone-like

and lower proteolytic activity than DegP, we incubated DegQ

with a variety of substrates to observe its functional oligomeric

state and resolved the high-resolution structure of DegQ/

substrate assemblies by cryo-EM.

Binding of Substrate by DegQ Results in Formation
of 12-/24-mers
Conversion from hexamers to 12-/24-mers in the present of

substrate is a crucial step in activation of DegP protease activity

(Jiang et al., 2008; Krojer et al., 2008b). Large DegQ oligomers,

namely 12- or 24-mers, were also observed by SEC and EM
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when protease-deficient DegQ (S187A) trimers were incubated

with denatured lysozyme or b-casein (Figures 3A and 3B; Fig-

ure S3A). Additionally, a proportion of DegQ formed 24-mers

with excess amount of denatured lysozyme (Figure 3C). To

further characterize the structure of DegQ oligomers, we

obtained high-resolution structures of DegQ (S187A) 12- and

24-mers from a total of 24,604 and 25,783 particles, respec-

tively, using cryo-EM and single-particle reconstruction (Fig-

ure 4A; Figures S3A and S3B). The resolutions of 12- and

24-mers achieved are 8.2 and 6.5 Å, respectively, based on

FSC 0.5 criteria (Figure S3C). Inspection of the density map

and atomic model fitting suggests that the actual resolution is

�8 Å for DegQ 24-mer and �10 Å for DegQ 12-mer, because

a helices are only partly resolved. Both types of cage-like

structure consist of similar units with characteristics of a DegP

trimer (Figures 4A; Figure S4B). Four and eight DegQ trimers

assemble via lateral interactions to form a 12-mer (16 nm in

diameter) and 24-mer (19 nm in diameter), respectively (Fig-

ure S3B). The b-casein molecules located in the cavity were

not resolvable in the DegQ 24-mer, because the disordered

substrates were averaged out (Figure S4A, right). However,

extra densities were observed in the cavity of DegQ 12-mers,

although the tetrahedral symmetry was imposed during the

reconstruction process (Figure S4A, left), presumably as a result

of the relatively ordered substrate and small inner space of the

12-mer structure.

The monomer extracted from the DegP 24-mer crystal struc-

ture (Protein Data Bank [PDB] ID: 3CS0) (Krojer et al., 2008b)

was fitted as a rigid body, into the EM densities of the DegQ

12- and 24-mers. However, the protease and PDZ1/PDZ2 do-

mains could not be fitted into the density maps simultaneously.

Thus, the three domains had to be fitted into the density maps

separately, which showed good agreement between the atomic

models and the density maps (Figure 4B). The structural features

of the protease domain were clearly observed in the DegQ

24-mer density map. For example, the a helices (aA and aE)

from DegP fitted well into the protease domain of DegQ 24-

mer (Figure 4C, left). However, the L2/L3 loop regions of DegP

largely protruded out from the DegQ density map (Figure 4C,
37, September 7, 2011 ª2011 Elsevier Ltd All rights reserved 1331



Figure 4. Cryo-EM Models of DegQ Oligo-

mers and Atomic Model Fitting

(A) Radially colored surface view for 3D recon-

struction of DegQ (S187A)/lysozyme complexes

12-mer (upper) and DegQ (S187A)/b-casein

complexes 24-mer (lower).

(B) Atomic model of a DegP 24-mer (PDB ID:

3CS0) docked into DegQ 12-/24-mers semi-

transparent maps (the PDZ1 domain and the PDZ2

domain from a neighboring trimer are labeled as

PDZ1 and PDZ2*, respectively). The protease,

PDZ1, and PDZ2 domains are shown in blue,

yellow, and red, respectively.

(C) Representative local fitting results of the DegQ

24-mer. The aE and aA helices are shown in

orange (left). Local differences between DegQ and

DegP near the catalytic center are indicated by red

boxes (right).

(D) Atomic model of the PDZ1 domain of a DegP

24-mer (PDB ID: 3CS0) docked into a DegQ 24-

mer. The overall fit is good (the helices aF is

labeled), with the exception of b19/20 (left). The

color of the extra densities is darkened and

manual adjustment is indicated by the arrow (left).

b19/20 after modification is shown in orange

(right).

See also Figure S4.
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right), indicating a structural difference in these regions that will

be discussed in the following section.

Some PDZ1 domain a helices were resolved in the DegQ

24-mer density map (e.g., the aF from DegP fitted well) (Fig-

ure 4D) allowing us to precisely dock the atomic model. The

overall fit was good, with the exception of b strands b19/20

fromDegP,which protrudedoutside of theDegQmap (Figure 4D,

left). As expected, nearby EM density was unfilled, with a size

and shape characteristic of b19/20 (Figure 4D, left), hinting

that b19/20 could undergo a position change compared with

that of DegP. An improved local fitting was obtained by bending

a nonconserved linker, which is connected to b19/20 (Figure 4D,

right; Figure S4C).

The PDZ2 Domain, Rather Than the PDZ1 Domain, Plays
an Important Role in Assembly of Different Sizes
of Oligomer
After precisely positioning all three domains into one trimer

and another PDZ2 domain into the adjacent trimer, it was clear

that the DegQ 12- or 24-mer was formed by a similar PDZ1-

PDZ2* interaction between neighboring trimers as in DegP

assemblies (Figure 4B). In more detail, aF from the PDZ1 domain

and b25/26 from the PDZ2* domain come together to form the

PDZ1-PDZ2* interface (Figure 5A). Such a critical intertrimer

PDZ1-PDZ2* interaction pattern was characteristic in all DegP/

Q 12- and 24-mers (Figure 5A) (Jiang et al., 2008; Krojer et al.,

2008b).

DegQ and DegP both can form both 12- and 24-mers.

However, how PDZ domains reorient during conversion from

12- to 24-mer remains unknown. Based on the atomic model

fitting of EM maps of DegQ 12-/24-mers, we aligned the

protease or PDZ1 domains together to explore the orientation
1332 Structure 19, 1328–1337, September 7, 2011 ª2011 Elsevier Lt
change of PDZ1/2 domains between the 12- and 24-mers. Rela-

tive to the DegQ 24-mer, the PDZ1 domain of the 12-mer rotated

%7� around the protease domain (Figure 5B); in contrast, the

PDZ2 domain underwent a rotation of �35� around the PDZ1

domain (Figure 5C). In light of the orientation change, the position

of the PDZ1 domain appears relatively fixed after conversion

from a 24-mer to a 12-mer (Figure 5B), consistent with the

PDZ1 domain of DegP being locked by the L3 loop after oligo-

merization (Krojer et al., 2010). In DegP, the PDZ1 and protease

domains collaborate during degradation (Krojer et al., 2008a),

indicating that the proper distance between the PDZ1 and

protease domains is important for degradation. We compared

DegQ 12- and 24-mers with DegP 24-mer and found that the

distances between the substrate binding site in PDZ1 domain

and the catalytic center in protease domain were all the same

among the three different oligomers (Figure 5B). This result

further demonstrated that the position of PDZ1 domain remains

almost unchanged in order to eliminate the unfolded proteins

efficiently, even if the oligomeric state has altered. Thus, the

PDZ2 domain, rather than the PDZ1 domain, is mainly respon-

sible in the assembly of different sizes of oligomer.

A Groove-like Structure May Mediate DegQ Proteolytic
Activity
As mentioned above, the proteolytic activity of DegQ is much

weaker than that of DegP. We have ruled out the possibility

that this is due to a different activation mechanism; thus, the

catalytic center of DegQ may undergo a conformational change.

To test this, we compared the protease domains of the DegP

and DegQ 24-mers. Interestingly, a groove-like structure was

observed in the center of the DegQ protease domain (Figure 6A).

After fitting, the residue S210 of DegP, one of the catalytic triad
d All rights reserved



Figure 5. The PDZ1-PDZ2* Interaction and

the Orientation Change of PDZ Domains

between 12- and 24-mers

(A) A similar PDZ1-PDZ2* interaction between

DegQ 12- (left) and 24-mer (right). PDZ1 and PDZ2

are shown in yellow and red, respectively. The

interfaces formed by aF and b25/26 are indicated by

green boxes.

(B) The relatively fixed position of PDZ1 among

DegP 24-, DegQ 12-, and 24-mers relative to the

protease domain. The DegP 24-, DegQ 12-, and

24-mers are shown in yellow, white, and blue,

respectively. The protease domains of three

different oligomers are aligned together. The

distance between the catalytic center and the

substrate binding site of PDZ1 domain is indicated

by the arrow.

(C) The orientation change of PDZ2 between DegQ

12- and 24-mers relative to the PDZ1 domain is

indicated by the arrow. The DegQ 12- and 24-mers

are shown in white and blue, respectively. The PDZ1

domains of two different oligomers are aligned

together.
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was located at the bottom of the groove-like structure in DegQ

(Figure 6A). For comparison, the atomic model of the DegP 24-

mer was converted to electron density and filtered to a resolution

similar to DegQ 24-mer (Figure 6B, right). The DegP catalytic

center was located on the surface region with a feature of

wide-open pocket (Figure 6B, right), which was remarkably

different from the groove-like structure of DegQ (Figure 6B,

left). We suggest that the existence of a narrow groove may

affect substrate access to the catalytic center. Indeed, if we tried

to dock the substrate peptide, derived from the crystal structure

of the DegP 24-mer (PDB ID: 3MH7) (Krojer et al., 2010), it inter-

fered with the side wall of the groove (Figure 6C), supporting our

hypothesis.

To further confirm our data, the crystal structures of DegS in

both the active and inactive states (PDB ID: 1SOT, 1SOZ) (Wilken

et al., 2004) were fitted into our EM density map (Figure 6D). The

atomic model of DegS in the inactive state resulted in a better

fit compared to DegS in the active state (Figure 6D). Obviously,

the L2/L3 loops of active DegS largely protruded out from the

DegQ map. The correlation coefficients (calculated by Situs)

(Wriggers et al., 1999) were 0.77 and 0.83 for active and inactive

DegS, respectively, indicating that DegQ in its functional state

resembles inactive DegS. This result suggests that the pro-

teolytic activity of DegQ may not be completely activated via

substrate-induced oligomerization.

Moreover, two differences in the docking results of the active

center were evident. First, the L2/L3 loops of DegP protruded

from the DegQ density map, and second, a large volume of the

side wall of the groove-like structure was unfilled (Figure 4C,

right). Thus, DegQ L2/L3 loops must undergo a conformational

change to achieve an acceptable fit. To quantitatively describe

the orientation change of the loops based on the high-resolution

cryo-EM map, the MODELER and molecular dynamics flexible

fitting (MDFF) methods (Sali et al., 1995; Trabuco et al., 2008)

were used to simulate the atomic model of DegQ (Figure 6E).
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Subsequently, the two atomic models (DegQ by cryo-EM-based

simulation and DegP by X-ray crystallography) were aligned,

showing that most of the atomic structure overlapped perfectly,

with the exception of the L2/L3 loops (Figure 6F). The L2 loop of

DegQ was tilted �30� toward the catalytic center relative to the

activated DegP (Figure 6F), similar to the inactivated DegP to

a certain extent. Meanwhile, the L3 loop was tilted �30� toward

the PDZ1 domain (Figure 6F). Because the active-site L2/L3

loops are known to play a crucial role in regulating the protease

activity of various oligomers of DegP, any distortion of them in

DegQ will likely affect the proteolytic activity.

DISCUSSION

Despite the generally high homology of the protease domain of

the HtrA family, the Q-linker, which is also called LA loop in

DegP and DegQ of E. coli, exhibits low sequence homology.

Recent studies (Krojer et al., 2010) indicated that the LA loop

plays a key role in regulating the function of DegP during heat

stress conditions. DegQ is characterized by a short LA loop in

its protease domain. Although the function of DegQ in E. coli

remains unknown, it is of interest because many bacteria, unlike

E. coli, lack DegP. These organisms contain only one DegQ-like

protease that is also characteristic with a short LA loop (Kim and

Kim, 2005; Onder et al., 2008). Thus, study of the structure and

function of E. coli DegQ may assist in understanding the func-

tional mechanisms of DegQ-like proteases that are possessed

by many bacteria.

At low temperatures, free DegP exists as stable hexamers.

In this form proteolytic activity is greatly suppressed to prevent

mistaken degradation of proteins (Spiess et al., 1999). In

contrast, free DegQ trimers are incapable of inhibiting their

proteolytic activity, which would seem to be harmful to the cell.

To make up for this defect, DegQ has low proteolytic, but high

chaperone-like activity. These results indicate that free DegQ
37, September 7, 2011 ª2011 Elsevier Ltd All rights reserved 1333



Figure 6. A Groove-like Structure Partially Blocks the Entrance to the Catalytic Center and Affects the Proteolytic Activity of DegQ

(A) A groove-like structure near the catalytic center in the EMmap of a DegQ 24-mer, indicated by a blue box. S210, one of the catalytic triad in DegP, is labeled

in green.

(B) Structural comparison of the catalytic center of a DegQ 24-mer (left) and a DegP 24-mer (right). The electronmap of DegP (right) was converted from the crystal

structure of the DegP 24-mer (PDB ID: 3CS0).

(C) An atomic model of a DegP 24-mer in complex with substrate (PDB ID: 3MH7) docked into the EM map of a DegQ 24-mer. The substrate is blocked by the

sidewall of the groove in DegQ (the overlapping area indicated by a yellow circle).

(D) Atomic models of DegS in both the active (PDB ID: 1SOZ) and inactive (PDB ID: 1SOT) states, docked into the EM map of a DegQ 24-mer. Inactive DegS

provided a better fit (right). S201, one of the catalytic triad in DegS, is labeled in red.

(E) Atomic model of DegQ simulated by MODELER and MDFF based on a high resolution EMmap. A monomer extracted from the EMmap of a DegQ 24-mer is

shown in white. The protease and PDZ1/2 domains of DegQ generated by cryo-EM based simulation are shown in blue, yellow, and red, respectively.

(F) Structural comparison of the protease domains of DegQ andDegP. Atomicmodels of DegQ andDegP are aligned together, and are colored in green andwhite,

respectively. The L1, L2, and L3 loops of DegQ are colored in red. The conformational changes of the L2 and L3 loops between DegQ and DegP are indicated

by the arrows.
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trimers may serve mainly as a chaperone and rapidly bind dena-

tured or partially folded substrates to protect rather than degrade

them. This hypothesis is supported by another observation:

many stable wild-type DegQ/OmpA complexes were obtained

during the purification process. In contrast, it was difficult to

maintain oligomers of wild-type DegP with OMPs in vivo (Jiang

et al., 2008), because the larger oligomers were in a transient

state and immediately reformed to hexamers after degradation.

When protease-deficient DegP (S210A) was substituted for
1334 Structure 19, 1328–1337, September 7, 2011 ª2011 Elsevier Lt
wild-type DegP, lots of oligomers in complex with OMPs could

be purified from extracts (Krojer et al., 2008b), supporting our

hypothesis.

In DegP, hexamers (resting state) can disassemble to trimers

(ready state) more easily at high temperature (Jiang et al.,

2008; Krojer et al., 2010, 2008b), explaining why its proteolytic

activity is improved with the increase of temperature. DegQ

exists primarily as trimers in the native state; however, the

proteolytic activity of DegQ also shows temperature-sensitivity
d All rights reserved
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to a certain extent (Figure 2A). This result suggests that some

structural motifs in DegQ, such as active-site loops, may involve

in the thermoregulation of proteolytic activity. Previous study has

shown that a helical lid from Thermotoga maritima (Tm) HtrA that

covers the active site is lifted up to expose the catalytic sites at

elevated temperatures (Kim et al., 2008), further supporting our

hypothesis.

The overall conformation of DegQ is similar to that of DegP.

However, the high-resolution model shows local conformational

features unique to each, such as b19/20 in the PDZ1 domain.

DegQ trimers oligomerize to form 12- and 24-mers on binding

substrate proteins. This activation mechanism, homo-oligomeri-

zation, is identical to that of DegP (Jiang et al., 2008; Krojer et al.,

2008b). Our data thus support the result that these oligomers

assemble by means of an interaction between the PDZ1 and

PDZ2 domains. Previous studies have not provided details on

how a series of high-order complexes are formed by the same

structural unit. In this study, the high-resolution structures of

DegQ 12- and 24-mers were resolved. When the two structures

are compared, the orientation and position of the PDZ2 domains

need extensive modification via bending of the flexible linkers.

This indicates how DegQ trimers form different cage-like struc-

tures to enclose substrates with different sizes. In DegP and

DegS, the L3 loop transduces the signal from the PDZ domain

to the protease domain and reconfigures the L1/L2 loops into

a functional site (Krojer et al., 2010; Walsh et al., 2003; Wilken

et al., 2004). In our cryo-EM structure of DegQ, all L2/L3 loops

underwent a conformational change comparedwithDegP, giving

rise to formation of a groove-like structure. As a result, substrate

entrance to the active site is partially blocked by the groove and

thus degradation may be partially inhibited, explaining the lower

proteolytic activity of DegQ. This result further corroborates the

hypothesis that the primary role of DegQ in the cell is as a chap-

erone. More evidence, using techniques such as X-ray crystal-

lography, is required to fully understand the role of DegQ.

During heat shock, DegP is induced and its proteolytic activity

is upregulated to remove misfolded proteins as quickly as

possible and thus protect cells. Under normal conditions, the

function of DegP is partially inhibited and DegQ instead may

play major roles in the protein quality control. The discussion

by Önder et al. (2008) gives us salient cues for defining the role

of DegQ in E. coli. The optimal growth temperature for enteric

bacteria such as E. coli is �37�C. Önder et al. (2008) indicated

that DegQ, a second protease, might reflect an adaptive

response of bacteria to higher physiological growth tempera-

tures. Enteric bacteria seem to require a DegQ-like protease

activity continuously and are able to overproduce a DegP-like

protease during heat shock. In our model, when a small quantity

of misfolded protein was present, DegQ immediately seques-

tered and protected them, thus delaying the occurrence of

heat shock, frequent occurrence of which would be harmful to

the cell. That is, DegQ serves as a ‘‘buffer pool’’ and so comple-

ments the activity of DegP.
EXPERIMENTAL PROCEDURES

Chemicals and Reagents

b-casein was purchased from Sigma, resorufin-labeled casein was from

Roche, protein assay kit was from Pierce, lysozyme was from Amersco, and
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DTT was fromMerck. The other chemicals were reagent grade and purchased

from commercial source.

Plasmid Construction

The wild-type degQ gene carried on the pTdeg plasmid was amplified by PCR

and inserted into the pET-28a expression plasmid vector, after being cleaved

withNcoI and XhoI restriction enzymes to generate pET-28a-degQ. A 63Histi-

dine tag was added to the C terminus of the DegQ protein. Overlapping

strategy was adopted to generate DegQ mutant constructs.

Protein Expression and Purification

Wild-type and respective mutants of DegP and DegQ were expressed and

purified as described with minor modification (Jiang et al., 2008; Shen et al.,

2009). All proteins were suspended in PBS buffer containing 40 mMNa2HPO4,

10 mM NaHPO4, 25 mM NaCl (pH 7.6). Protein concentration was measured

using Pierce protein assay kit.

Size Exclusion Chromatography

Gel filtration chromatography was performed on a Superdex 200 column (GE

Healthcare Life Sciences) equilibrated in buffer (40 mM Na2HPO4, 10 mM

NaHPO4, 25 mM NaCl, pH7.6) at 4�C. Protein samples (1 ml) were applied

to the column at concentrations ranging between 0.5 and 2 mg/ml at a flow

rate of 0.4 ml/min.

Sedimentation Velocity Analysis

Sedimentation velocity measurements were performed on the Proteomelab

XL-I analytical ultracentrifuge (Beckman Coulter, Fullerton, CA) equipped

with a three channel An-60 Ti rotor. The protein samples (380 ml) at concentra-

tion 0.6 mg/ml and corresponding buffer (400 ml) were loaded in pair into the

double sector quartz cell and run at 42,0003 rpm at 20�C. Data were collected

at wavelength of 280 nm in a continuous scan mode with scanning spaces of

30 s. Sedimentation coefficient distribution (c(s)) was calculated using the

program SEDFIT.

Mass Spectrometry

To identify copurified protein substrates, protein band were excised from the

SDS-PAGE gel and digested with trypsin. The digested sample was loaded

onto a homemade C18 column (100 mm 3 100 mm) packed with Sunchrom

packing material (SP-120-3-ODS-A, 3 mm) and followed by nano-LC-ESI-

MS/MS analysis. The LTQ mass spectrometer was operated in the data-

dependent mode in which the initial MS scan recorded the mass-to-charge

(m/Z) ratios of ions over the mass range from 350–1700 Da. The five most

abundant ions were automatically selected for subsequent collision-activated

dissociation. All MS data were searched against E. coli Database downloaded

from the NCBI database using the SEQUEST program (Thermo, USA).

Proteolytic Activity Assay

Resorufin-labeled casein was used as the substrate protein to quantitatively

determine the protease activity of DegQ and DegP. Mixtures of 200 ml resoru-

fin-labeled casein (0.4% [w/v] in PBS buffer) and 200 ml buffer (0.2 M Tris-HCl,

pH 7.8, 0.02 M CaCl2) were added into 400 ml protein solution containing

a certain amount of DegQ or DegP (0.2 mg/ml), and incubated at 37�C or

42�C. Every 15 min, a 40-ml sample was removed and added into 96 ml of

5% TCA to terminate the reaction and incubated for 10 min at 37�C. Then
the mixtures were centrifuged for 5 min at 20,000 g. An 80-ml sample of the

supernatant was mixed with 120 ml assay buffer (0.5 M Tris-HCl, pH 8.8) and

the absorbance at 574 nm was immediately measured. The protease activity

was calculated from the slope of the linear range of the absorbance curve

(Jiang et al., 2008; Jomaa et al., 2007).

To characterize the protease activity against other substrates, b-casein or

DTT denatured lysozyme were mixed with a certain amount of DegQ trimer

or DegP hexamer and placed at 37�C. All samples were subjected to SDS-

PAGE, and quantitation of protein bands of lysozyme was analyzed densito-

metrically by using TotalLab (version 2.01) program (Shen et al., 2009).

Chaperone-like Activity Assay

Mixtures (1 ml) of the DegQ or DegP protein (0.09 mg/ml) and lysozyme

(0.1 mg/ml), containing 50 mM Na2HPO4 -NaH2PO4, 20 mM DTT, pH7.6,
37, September 7, 2011 ª2011 Elsevier Ltd All rights reserved 1335
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were incubated at 37�C. Aggregation of lysozyme was monitored by

measuring the light absorption at 360 nm with a spectrophotometer (Jiang

et al., 2008; Shen et al., 2009; Skorko-Glonek et al., 2007).

Light scattering and enzymatic activity assays of CS (Sigma) were carried

out as described (Buchner et al., 1998). To determine the aggregation kinetics,

light scattering was measured at 500 nm under time scan mode in an FL-4500

fluorescence spectrophotometer (Hitachi) using an external bath circulator

(Thermo). Stock solutions of 0.435 mg/ml CS was diluted 100-fold with stirring

into 50 mM HEPES-KOH (pH 7.5), which was preincubated at 25�C. The inac-

tivation reaction was started by plunging the solution into prewarmed curettes

at 43�C. DegQ S187A or DegP S210A (final concentration, 0.01 mg/ml) were

added before CS at 25�C. At the indicated time points, an aliquot of 10 ml

was withdrawn and added to 190 ml assay buffer (50 mM Tris-HCL [pH 7.5],

2 mM EDTA, 0.5 mM oxalacetic acid, 0.3 mM acetyl-coenzyme A, 0.1 mM

DTNB) to determine the remaining CS activity based on the first step of the

citric acid cycle. In brief, the CoA formed in this assay stoichiometrically

reduces the Ellman’s reagent dithio-1, 4-nitrobenzoic acid (DTNB), resulting

in an increased absorbance at 412 nm. The highest specific activity value

at the starting point was considered as 100%, and the calculated specific

activities at other time points were expressed as the percentage of this value.

Each experiment was performed three times, and the standard deviation was

calculated for each reaction.

Preparation of the DegQ-Substrate Complexes

The preparation of the DegQ-substrate complexes was carried out as

described (Jiang et al., 2008). Briefly, the purified DegQ trimers were added

to the unfolded substrate proteins (b-casein or lysozyme) in a molar ratio of

1:2 and incubated at 37�C for 30 min. DTT was added to lysozyme at the final

concentration of 20 mM to unfold it.

EM and Image Processing

Negative-stain samples were prepared as described (Adair and Yeager, 2007).

Briefly, after being washed with buffer two times, the grids were washed with

buffers twice and then negative-stain with 1% uranyl acetate. The negative-

stain samples were imaged on an FEI F20 TEM operated at 200 kV and

a nominal magnification of 50,0003.

Fresh DegQ/substrate complexes were rapidly frozen by plunging them into

liquid ethane using Vitrobot Mark IV (FEI Company) and stored in liquid

nitrogen. The cryo samples were imaged on an FEI Titan Krios TEM equipped

with an Eagle 4k 3 4k CCD camera, operated at 300 kV with the dosage of

20 e�/Å2 at a nominal magnification of 59,0003 . The defocus was set to

between �1.5 and �3 mm, and the final pixel size is 1.46 Å/pixel.

Electronmicrographs were evaluated by fast Fourier transformation (FFT) for

astigmatism and drift. We selected 315 micrographs from a total of 763 for the

reconstruction of DegQ 12-mer, and 796 micrographs from a total of 1835 for

the reconstruction of DegQ 24-mer. All the micrographs has the visible Thon

rings beyond 1/9 Å�1.

All image processing and 3D reconstructions were done using EMAN

software (Ludtke et al., 1999, 2001). Particles were selected from the digital

micrographs with the boxer program. The contrast transfer functions (CTF)

were manually determined with the ctfit program. For 2D analysis, refer-

ence-free classification was simply carried out using ‘‘refine2d’’ in EMAN—

that incorporates iterative centering, multi-reference alignment, and classifica-

tion into a single batch script—with an initial class number of 100–200,

depending on the data set. The initial models for DegQ 12-mer and 24-mer

were generated from reference-free class-averages with the startcsym

program. The models were iteratively refined until no further improvement

can be obtained. During the reconstruction process, tetrahedral and octahe-

dral symmetries were imposed to 12-mer and 24-mer, respectively. The reso-

lution for the final reconstruction result was determined as 8.2 Å for 12-mer and

6.5 Å for 24-mer based on the 0.5 criterion of Fourier shell correlation (FSC).

The final reconstruction models were Gaussian low-pass filtered to the 8.2 Å

for 12-mer and 6.5 Å for 24-mer, respectively, with a B factor of 200 Å2

imposed.

The rigid body fitting of the crystal structure into the 3D EMmap was carried

out with the colores program of the Situs software package (Wriggers, 2010;

Wriggers et al., 1999). The correlation coefficient between the atom model

and EM map was calculated by Situs. The images of the reconstructions
1336 Structure 19, 1328–1337, September 7, 2011 ª2011 Elsevier Lt
and crystal structures were prepared with the University of California, San

Francisco Chimera program (Pettersen et al., 2004).

Homology Modeling of DegQ and Flexible Fitting

The homology model of DegQ was generated by Modeler (Sali et al., 1995;

Sánchez and Sali, 2000) using the structure of DegP 24-mer (PDB ID: 3CS0)

as the template. Subsequently, the atommodel of DegQwas obtained by flex-

ible fitting the homology model of DegQ into the EM map of DegQ 24-mer

using the MDFF method (Trabuco et al., 2008).
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The cryo-EM density maps of DegQ 12-mer and 24-mer were deposited in
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Figure S1, related to Figure 1. The peptides mass fingerprinting analysis of the co-purified DegQ 

substrate.  

(A) The MS spectra of the co-purified DegQ substrates. The major peak values of each peptide are 

marked in larger fonts. (B) The peptides values identified from MS correspond to sub-sequences 

in OmpA protein (colored in red). 

 



 

Figure S2, related to Figure 2. Comparison of the chaperone-like and proteolytic activities 

between DegQ and DegP. 

(A) Comparison of the chaperone-like activities between DegQ and DegP in suppressing 

thermal-induced CS aggregation; (B) Comparison of the leftover CS activities at the indicated 

time points; (C) The cleavage analysis of DegP and DegQ of three different concentrations against 

β-casein by SDS-PAGE. The assay was performed at 37°C and stopped at various time points; (D) 

The cleavage analysis of DegP and DegQ of three different concentrations against DTT denatured 

lysozyme by SDS-PAGE. The assay was performed at 37°C and stopped at various time points. 

Quantitation of protein bands of lysozyme was analyzed densitometrically by using TotalLab 

program. Comparison of the relative proteolytic activity of DegP and DegQ against denatured 

lysozyme was shown on the right, respectively. The relative protease activities were calculated by 

considering the activity of DegQ as 100%. 



 
Figure S3, related to Figure 3. Cryo-EM analysis of the DegQ 12-/24-mers.  

(A) Representative area of cryo electron micrographs of the DegQ (S187A)/lysozyme complexes 

12-mer (left) and DegQ (S187A)/β-casein complexes 24mer (right). Class-averages for each 

complex are shown below. (B) Surface views of DegQ 12-mer and 24-mer showing their overall 

architecture. The particle of 12-mer is shown in three different orientations along the three-fold, 

two-fold and another three-fold axes, respectively. The particle of 24-mer is also shown in three 

different orientations along the four-fold, three-fold and two-fold axes, respectively. (C) Fourier 

shell correlation of DegQ 12- and 24-mers. A threshold of 0.5 was used to evaluate the resolution 

of DegQ 12- (left) and DegQ 24-mer (right). 



 

Figure S4, related to Figure 4. The cryo-EM structures of DegQ 12-/24-mer.  

(A) A proportion of the volumes were removed from DegQ 12- (left) and 24-mer (right). The 

addition densities (colored in red) were detected in the center of the DegQ 12-mer. (B) A trimer 

extracted from DegQ 24-mer shown in three different orientations. Each monomer from one 

trimer is colored differently. (C) The non-conserved linker connected to β19/20. Sequence 

alignment showed that the linker connected to β19/20 is not conserved between DegP and DegQ 

(indicated by the red box), and thus the manual adjustment of β19/20 is feasible (indicated by the 

blue arrow). 
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